Lesson 1.1.3

1-26. See below:

- a. Yes, -16 has no real number square root.
- b. The domain is all positive numbers and zero.
- c. Her logic makes sense—the output of g(x) will always be either negative or zero, because the result of squaring will always be positive or zero.
- d. The range is all negative numbers and zero.

1-27. See below:

a. See graph below. A parabola with vertex (4, -25), x-intercepts (-1, 0) and (9, 0), and y-intercept (0, -9).

- b. Sample answer: $x \min = -3$, $x \max = 11$, $y \min = -30$, $y \max = 10$
- c. Sample answer: Window settings include at least the key points and should include the domain and/or range when they do not go to infinity.

1-28. Graph shown below:

- a. No graph is visible.
- b. Sample answer: $x \min = 0$, $x \max = 40$, $y \min = 0$, $y \max = 40$.
- c. Domain: all real numbers, range: all real numbers greater than and including 11.

1-29. See below:

a. Possible graph shown below.

b. Possible graph shown below.

1-30. See below:

- a. No.
- b. Sample window: $x \min = 0$, $x \max = 5$, $y \min = -20$, $y \max = 5$
- c. (4, -15), graph shown below.

- d. Answers vary.
- **1-31.** Graph shown below; *x*-intercepts (\approx -2.43, 0), (\approx -1.53, 0), and (\approx 2.96, 0); *y*-intercept (0, -2.75); D: $x \neq -2$; R: all real numbers.

1-32. In the graph below, $y = \frac{1}{x} - 4$ is solid and $y = \frac{1}{x-4}$ is dotted. The graphs are not the same because the two equations do not have the same solutions. For example, (1, -3) is a solution to the first equation, but $(1, -\frac{1}{3})$ is a solution to the second equation.

1-34. See below:

- a. The numbers between -2 and 4 inclusive.
- b. The numbers between -1 and 3 inclusive.
- c. No. He is missing all the values between those numbers. The curve is continuous, so the description needs to include all real numbers, not just integers.
- d. Sample graph shown below.

1-35. See below:

- a. 70
- b. 2
- c. 43
- d. undefined

e.
$$3x^2 = \sqrt{x-5} - 3$$

f.
$$3x^2 = \sqrt{x-5} + 7$$

- g. all real numbers
- h. all real numbers greater than or equal to 5.
- i. They are different because the square root of a negative is undefined, whereas any real number can be squared.
- **1-36.** Chelita is correct about *how* to find the intercepts, but she makes an error with signs while factoring. The correct equation is (x 7)(x 3) and the x-intercepts are 7 and 3.

1-37. See below:

a.
$$y = \frac{x-6}{3}$$

b.
$$y = \frac{x+10}{5}$$

c.
$$y = \pm \sqrt{x}$$

d.
$$y = \pm \sqrt{\frac{x+4}{2}}$$

e.
$$y = \pm \sqrt{x} + 5$$

1-38. See below:

$$a. -7$$

c. The *x*- and *y*-intercepts.

1-39. See below:

a. y = 3x + 24, table and graph shown below.

- b. At 16 weeks. You can see this in the table and graph where y = 72. You can see this in the equation by substituting 72 for y and solving for x.
- c. Possible inputs: all real numbers greater than and including 0, possible outputs: all real numbers greater than and including 24

1-40. See below:

a.
$$x = 13$$

b.
$$x = 8$$