Lesson 1.2.1

1-53. The graph and table for a box made from a paper of dimensions $22 \mathrm{~cm} \times 16 \mathrm{~cm}$ follows.

1-55. See below:

a. See diagram below for a box made from a paper of dimensions $22 \mathrm{~cm} \times 16 \mathrm{~cm}$.

b. $y=x(22-2 x)(16-2 x)=4 x^{3}-76 x^{2}+352 x$

1-56. See below:

a. Negative values of x do not make sense, and neither do values that are greater than half of the smaller dimension of the paper (for example, the domain is $0 \leq x \leq 8$ for a box made from a paper of dimensions $22 \mathrm{~cm} \times 16 \mathrm{~cm}$.
b. The volume should not be negative.
c. Continuous, because the values for x do not need to be integers.
d. Answers vary.
e. Answers vary.

1-57. The graph of the function is cubic. The graph for the $22 \mathrm{~cm} \times 16 \mathrm{~cm}$ box follows. A cubic function has a domain of all real numbers. The graph of this relationship is a portion of the cubic with domain limited to only
those points that represent possible heights of the paper box.

1-59. Table and graph shown below, $\mathrm{D}:-\infty<x<\infty, \mathrm{R}:-\infty<x<\infty$, intercepts $(0,-4)$ and $(\sqrt[3]{4}, 0)$, or ($\sim 1.59,0)$.

x	$h(x)$
-3	-31
-2	-12
-1	-5
0	-4
1	-3
2	4
3	23

1-60. See below:

a. $\approx 5.18 \mathrm{~m}$
b. ≈ 18.66 inches
c. $\approx 24.62^{\circ}$
d. $\sqrt{180} \approx 13.42$

1-61. See below:

a. A line, no variables are raised to a power.
b. $y=\frac{2}{3} x-2$, graph shown below.

c. Substitute $x=0$ and solve for y, substitute $y=0$ and solve for $x,(3,0)$ and $(0,-2)$.
d. Answers vary.
e. The intercepts are $(-9,0)$ and $(0,6)$, graph shown below.

1-62. See below:
a. $\mathrm{D}: x=-1,1,2 ; \mathrm{R}: y=-2,1,2$
b. $\mathrm{D}:-1 \leq x<1 ; \mathrm{R}:-1 \leq y<2$
c. D: $x \geq-1 ; \mathrm{R}: y \geq-1$
d. $\mathrm{D}:-\infty<x<\infty ; \mathrm{R}: y \geq-2$

1-63. There is an error in line 2. Both sides need to be multiplied by $x: 5=x^{2}-4 x, 0=x^{2}-4 x-5=(x-5)$ $(x+1), x=-1,5$

1-64. See below:

a. $x=3,-2$
b. $x=3,-3$

1-65. See below:

a. 2
b. -4
c. $\frac{1}{0}$ is undefined
d. Justifications vary.

1-66. See below:

a. $(0,3)$ and $\left(-\frac{3}{2}, 0\right)$, see graph below.

b. See part (a).
c. These equations are equivalent, they just have different notation.

1-67. $x \approx 2.72$ feet, $y \approx 1.27$ feet

1-68. See below:

a. D: $-2,-1.2 ; \mathrm{R}:-1,0,1$
b. $\mathrm{D}:-1<x \leq 1 ; \mathrm{R}:-1 \leq y<2$
c. $\mathrm{D}: x>-1 ; \mathrm{R}: y>-1$
d. $\mathrm{D}:-\infty<x<\infty ; \mathrm{R}:-\infty<y<\infty$

1-69. $l=4 w$ and $l+w=22$ or $w+4 w=22$. The length is 17.6 cm , and the width is 4.4 cm .

1-70. See below:

a. $\quad x=-\frac{1}{17} \approx-0.059$
b. $x=\frac{66}{13} \approx 5.08$
c. $x=-1,3$

1-71. See below:

a. $(-1,9)$ and $(5,21)$
b. $x^{2}+17$
c. $x^{2}-4 x-5$

1-72. See below:

a. $x=\frac{5(y-1)}{3}$
b. $x=\frac{-2 y+6}{3}$
c. $x= \pm \sqrt{y}$
d. $x= \pm \sqrt{y+100}$

1-73. $y=\pi x^{2}$, table and graph shown below.

x	0	1	2	3	4
y	0	π	4π	9π	16π

1-74. See below:

a. $\sqrt{58} \approx 7.62$
b. $-\frac{3}{7}$

1-75. Solve $x^{2}+2 x+1=1.0$ or -2 .
1-76. See below:
a. $(0,6)$
b. $(0,2)$
c. $(0,0)$
d. $(0,-4)$
e. $(0,25)$
f. $(0,13)$

1-77. The second line should be $3 x+2=10-4 x+4 . x=\frac{12}{7}$

