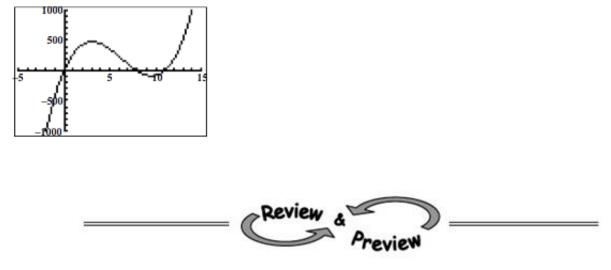

Lesson 1.2.1

1-53. The graph and table for a box made from a paper of dimensions $22 \text{ cm} \times 16 \text{ cm}$ follows.

1-55. See below:

a. See diagram below for a box made from a paper of dimensions $22 \text{ cm} \times 16 \text{ cm}$.


b. $y = x(22 - 2x)(16 - 2x) = 4x^3 - 76x^2 + 352x$

1-56. See below:

- a. Negative values of x do not make sense, and neither do values that are greater than half of the smaller dimension of the paper (for example, the domain is $0 \le x \le 8$ for a box made from a paper of dimensions 22 cm × 16 cm.
- b. The volume should not be negative.
- c. Continuous, because the values for x do not need to be integers.
- d. Answers vary.
- e. Answers vary.

1-57. The graph of the function is cubic. The graph for the $22 \text{ cm} \times 16 \text{ cm}$ box follows. A cubic function has a domain of all real numbers. The graph of this relationship is a portion of the cubic with domain limited to only

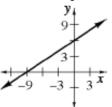
those points that represent possible heights of the paper box.

1-59. Table and graph shown below, $D: -\infty < x < \infty$, $R: -\infty < x < \infty$, intercepts (0, -4) and $(\sqrt[3]{4}, 0)$, or $(\sim 1.59, 0)$.

_	х	h(x)	b (-2)
-	-3	-31	h(x)
-	-2	-12	<u> </u>
-	-1	-5	-3 ‡/3 ×
	0	-4	-3±
	1	-3	l T
	2	4	-P‡
	3	23	¥ †

1-60. See below:

- a. $\approx 5.18 \text{ m}$
- b. ≈ 18.66 inches
- $c_{\cdot}~\approx 24.62^{o}$
- d. √180 ≈ 13.42


1-61. See below:

a. A line, no variables are raised to a power.

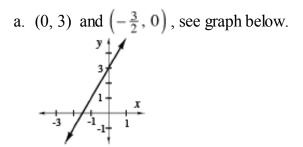
c. Substitute x = 0 and solve for y, substitute y = 0 and solve for x, (3, 0) and (0, -2).

- d. Answers vary.
- e. The intercepts are (-9, 0) and (0, 6), graph shown below.

1-62. See below:

- a. D: x = -1, 1, 2; R: y = -2, 1, 2
- b. D: $-1 \le x < 1$; R: $-1 \le y < 2$
- c. D: $x \ge -1$; R: $y \ge -1$
- d. D: $-\infty < x < \infty$; R: $y \ge -2$

1-63. There is an error in line 2. Both sides need to be multiplied by $x: 5 = x^2 - 4x$, $0 = x^2 - 4x - 5 = (x - 5)(x + 1)$, x = -1, 5


1-64. See below:

- a. x = 3, -2
- b. x = 3, -3

1-65. See below:

- a. 2
- b. -4
- c. $\frac{1}{0}$ is undefined
- d. Justifications vary.

1-66. See below:

- b. See part (a).
- c. These equations are equivalent, they just have different notation.

1-67. $x \approx 2.72$ feet, $y \approx 1.27$ feet

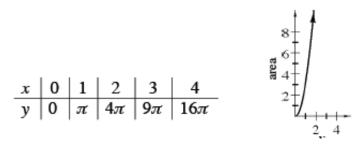
1-68. See below:

- a. D:-2,-1.2; R:-1, 0, 1
- b. D: $-1 < x \le 1$; R: $-1 \le y < 2$
- c. D: x > -1; R: y > -1
- d. D: $-\infty < x < \infty$; R: $-\infty < y < \infty$

1-69. l = 4w and l + w = 22 or w + 4w = 22. The length is 17.6 cm, and the width is 4.4 cm.

1-70. See below:

- a. $x = -\frac{1}{17} \approx -0.059$
- b. $x = \frac{66}{13} \approx 5.08$
- c. x = -1, 3


1-71. See below:

- a. (-1, 9) and (5, 21)
- b. $x^2 + 17$
- c. $x^2 4x 5$

1-72. See below:

- a. $x = \frac{5(y-1)}{3}$ b. $x = \frac{-2y+6}{3}$ c. $x = \pm \sqrt{y}$
- d. $x = \pm \sqrt{y + 100}$

1-73. $y = \pi x^2$, table and graph shown below.

1-74. See below:

- a. $\sqrt{58} \approx 7.62$ b. $-\frac{3}{7}$
- **1-75.** Solve $x^2 + 2x + 1 = 1.0$ or -2.

1-76. See below:

- a. (0, 6)
- b. (0, 2)
- c. (0, 0)
- d. (0, −4)
- e. (0, 25)
- f. (0, 13)

1-77. The second line should be 3x + 2 = 10 - 4x + 4. $x = \frac{12}{7}$