1.2.3 What happens in the middle?

Holes, Vertical Asymptotes, and Approach Statements

1-44. For
$$f(x) = \frac{x^2 + 5x + 3}{x + 4}$$
 and $g(x) = \frac{x^2 + 5x + 4}{x + 4}$

- a. Draw a careful sketch of each function. Use a dashed line for an asymptote and an open circle for a "hole" (a single point which the graph appears to go through, but where it is actually undefined).
- b. For both f(x) and g(x), find the equation of all asymptotes and the coordinates of all missing points (called "holes").
- c. Find the domain and range of f(x) and g(x).

1-45. HOLES AND ASYMPTOTES

With your team, write a conjecture that states which rational expressions of the form $\frac{p(x)}{q(x)}$ have a vertical asymptote and which have a "hole." When using your graphing calculator, be sure to use a "friendly window." To get you started, several rational expressions are given below. Be sure to generate your own rational expressions to confirm your conjecture.

Possible rational expressions:

$$\frac{x^{2}+2x+1}{x+1}$$

$$\frac{x^{2}+2x+2}{x+1}$$

$$\frac{x^{2}-5x+6}{x-2}$$

$$\frac{x^{2}-5x+6}{x-1}$$

1-46. MORE ON RATIONAL EXPRESSIONS

- a. Does $\frac{x^2+5x+6}{x+3} = x+2$? Why or why not? Do the two expressions have the same graph?
- b. The expressions $\frac{x^2-5x+6}{x-2}$ and x-3 are not quite equal. Add a statement to $\frac{x^2-5x+6}{x-2}=x-3$ to make it true.
- c. In previous courses, you may have ignored the domain issue when simplifying algebraic fractions, but from now on, domain considerations will be important.

Simplify
$$\frac{x^2-4}{x-2}$$
.

MATH NOTES

Approach Statements

A statement that describes the behavior of a function at various locations is called an **approach statement**. Although you can use shorthand symbols, such as " \rightarrow ," you need to write a complete set of statements involving all important approaches of the function.

A *complete* set of approach statements includes the extremes of the domain, as well as any holes or asymptotes. Below is a complete set of approach statements for, $y = \frac{1}{x-2} + 3$.

As *x* approaches infinity, *y*approaches 3.

As $x \to \infty, \to 3$.

As x approaches negative infinity, yapproaches 3

As $x \to -\infty$, $y \to 3$.

As *x* approaches 2 from the left, *y*approaches negative infinity.

As $x \to 2^-$, $y \to -\infty$.

As *x* approaches 2 from the right, *y*approaches positive infinity.

As $x \to 2^+$, $y \to \infty$.

1-47. Examine the graph of $y = \frac{1}{x+1} - 2$ below. Use the graph to answer the questions below.

- a. What does *y* approach as $x \to \infty$?
- b. What does *y* approach as $x \to -\infty$?
- c. What does y approach as $x \to -1^-$ (the symbol " -1^- " means approaching from the negative direction, or from the left)?
- d. What does y approach as $x \to -1^+$ (from the positive direction, or from the right)?
- e. Name all horizontal and vertical asymptotes.
- **1-48.** Sketch a graph of an even function that has a vertical asymptote at x = 2, a hole at x = -4 and as $x \to \infty$, $y \to 3$.
- **1-49.** In problem 1-46, the numerator and denominator were both polynomials. When this is not the case, factoring is no longer useful. For each fraction, evaluate f(0). Then,
 - i. If the function is defined at x = 0, state the value at x = 0.
 - ii. If the function is not defined at x = 0, use your calculator to sketch a graph. Clearly indicate whether the function has a hole or an asymptote at x = 0.

a.
$$f(x) = \frac{\sin x}{x}$$

b.
$$f(x) = \frac{\sin^2 x}{x}$$

c.
$$f(x) = \frac{\sin x}{x^2}$$

d.
$$f(x) = \frac{\cos x}{x}$$

$$e. \quad f(x) = \frac{1 - \cos x}{x - 1}$$

f.
$$f(x) = \frac{1 - \cos x}{x}$$

1-50. For the following functions, when 2 is substituted for x, the fraction has the **undefined** (or

indeterminate) **form** $\frac{0}{0}$. State whether the following graphs have holes, asymptotes, or neither at x = 2. Explain your answer.

a.
$$f(x) = \frac{x-2}{x-2}$$

b.
$$g(x) = \frac{(x-2)^2}{x-2}$$

c.
$$h(x) = \frac{x-2}{(x-2)^2}$$

d. Sketch and write a function that looks like y = x - 2 with a hole at x = 4.

- **1-51.** Analyze the graph of $y = \frac{(x+2)(x-1)}{x-1}$ at right. Homework Help **\(\)**
 - a. What does *y*approach as $x \to \infty$?
 - b. What does yapproach as $x \to -\infty$?
 - c. What does *y* approach as $x \to 1^-$ (from the left)?
 - d. What does y approach as $x \to 1^+$ (from the right)?

As
$$x \to 3+$$
, $y \to \infty$,
 $x \to 3-$, $y \to -\infty$,
 $x \to -\infty$, $y \to 1$, and as
 $x \to \infty$, $y \to 1$.

1-53. Convert the following domain and range from interval to set notation. Then sketch a possible function. Homework Help

$$D = (-\infty, 2) \bigcup (2, \infty)$$

$$R = (-\infty, -1) \bigcup (-1, \infty)$$

- **1-54.** On graph paper, sketch the function $g(x) = \sqrt{36 x^2}$. Shade $A(g, 3 \le x \le 6)$, the region between g(x) and the *x*-axis, for $3 \le x \le 6$. Homework Help §
 - a. Use geometry to find this area. Hint: Draw in a radius to create two easier regions whose difference is the shaded region.
 - b. Find $A(g, 0 \le x \le 3)$.

- c. Find $A(g, -3 \le x \le 6)$.
- **1-55.** A marathon runner runs a 26.2-mile race. Her distance traveled in miles at time t hours is p(t) = 7t. Homework Help \searrow
 - a. How long did it take her to finish the race?
 - b. What was her average velocity? Explain your reasoning.
 - c. Suppose she runs at a constant pace of 7 miles/hour. How far will she have gone in 2 hours?
 - d. Show how the units cancel using rate · time = distance.
- **1-56.** Wei Kit loves shortcuts! When calculating with fractional exponents, he looks for a way to avoid using his calculator. For example, he found out that $8^{2/3} = 4$ by using the method below:

$$8^{2/3} = (\sqrt[3]{8})^2 = (2)^2 = 4$$

Use Wei Kit's method to evaluate the following expressions: Homework Help \(\)

- a. $100^{3/2}$
- b. 27^{4/3}
- c. $16^{3/4}$
- d. $9^{4/2}$
- **1-57.** Sketch a graph of $y = 1 x^3$. Then complete the following approach statements. <u>1-57 HW</u> <u>eTool(Desmos)</u>. <u>Homework Help</u>
 - a. As $x \to \infty$, y approaches?
 - b. As $x \to -\infty$, y approaches?
 - c. As $x \to 0^-$ (from the left), y approaches?
- **1-58.** Estimate $A(f(x), -3 \le x \le 3)$ for $f(x) = 2x^2 + 1$. <u>1-58 HW eTool</u> (Desmos). <u>Homework Help §</u>

- a. Using left endpoint rectangles. The first two rectangles are shown.
- b. Using right endpoint rectangles.
- c. Using trapezoids. What do you notice? Does this always happen?

1-59. Each of the continuous functions in the table below is increasing, but each increases differently. Match each graph below with the function that grows in a similar fashion in the table. Homework Help ...

х	1	2	3	4	5	6	7	8	9
f(x)	64	68.8	74.6	81.5	89.8	99.7	111.7	126	143.2
g(x)	38	52	66	80	94	108	122	136	150
h(x)	22	42.9	57.3	68.5	77.6	85.3	92	97.9	103.1

1-60. When the flag below is rotated it has a volume of $\left|\frac{243}{2}\pi\right|$ un³. Homework Help §

- a. Describe the resultant three-dimensional figure.
- b. What is the value of *d*?
- c. If the diagram was rotated 90° and the flag was then rotated about a horizontal pole, would the volume change?