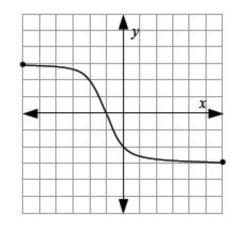

1.2.4 What is a composite function?

Composite Functions and Inverse Functions



1-61. Given the two functions f(x) and g(x) graphed below:

f(x)

g(x)

- a. State domain and range of f(x).
- b. State domain and range of g(x).
- c. Find f(g(-2)).
- d. Find g(f(-2)).
- e. Find f(f(3)).
- f. Why can you not evaluate f(g(5))?
- **1-62.** If $f(x) = x^2$, g(x) = x + 1, and $h(x) = \frac{1}{x}$, express k(x) as compositions of f(x), g(x), and h(x). For example, $(x + 1)^2$ can be expressed as f(g(x)).
 - a. $k(x) = \frac{1}{x^2}$
 - b. $k(x) = \frac{1}{x} + 1$

c.
$$k(x) = x^4$$

d.
$$k(x) = \frac{1}{x^2 + 1}$$

1-63. Given $f(x) = 2^x$ and $g(x) = \sqrt{1-x}$, answer the questions below. Use interval notation.

- a. Find the domain and range of f(x) and g(x).
- b. Find f(g(x)) and state its domain.
- c. Find g(f(x)) and state its domain.

1-64. INVERSE FUNCTIONS

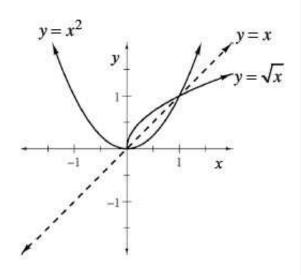
Let
$$h(x) = 3x + 2$$
 and $j(x) = \frac{x-2}{3}$.

- a. Find h(j(x)). What do you notice?
- b. Functions such that f(g(x)) = g(f(x)) = x are called **inverse functions**. Explain why this notation would show that f and g are inverse functions.
- c. Find a function g such that f(g(x)) = x and $f(x) = e^x + 2$.
- **1-65.** An inverse function undoes what a function does. For example, $\sin \frac{\pi}{6} = \frac{1}{2}$, which means the sine function takes the angle $\frac{\pi}{6}$ and returns the ratio $\frac{1}{2}$. Therefore the *inverse sine* function takes the ratio $\frac{1}{2}$ and returns the angle $\frac{\pi}{6}$. The notation for inverse functions can be confusing; the inverse of f is written f^{-1} . The inverse sine function is written $\sin^{-1}(x)$. $\sin^{-1}(x)$ is also referred to as $\arcsin(x)$. Note: $\sin^{-1}(x) \neq \frac{1}{\sin(x)}$!

Write each of these statements entirely in symbols.

- a. The inverse sine of $\frac{1}{2}$ is $\frac{\pi}{6}$.
- b. When the inverse of the function *g* is applied to 7, the result is 5.

MATH NOTES



Inverse Functions

We say that f(x) and g(x) are **inverse functions** if f(g(x)) = x for all x in the domain of g and g(f(x)) = x for all x in the domain of f. We write $f^{-1}(x)$ for the inverse of f(x). So $g = f^{-1}$ and $f = g^{-1}$.

If we graph f(x) and $f^{-1}(x)$ on the some set of axes then their graphs are symmetric across the line y = x. Note: We must restrict the domain of some functions in order for the inverse to be a function.

Some important pairs of inverse functions are h(x) = x^2 for $x \ge 0$ and $h^{-1}(x) = \sqrt{x}$ for $x \ge 0$; $j(x) = \sin x$ for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ and $j^{-1}(x) = \sin^{-1}(x)$ for $-1 \le x \le 1$.

If a function f(x) satisfies the horizontal line test, then f^{-1} exists.

1-66. Solve for *x*.

a.
$$f(x) = 2^x$$

b.
$$g(x) = \frac{x+1}{x}$$

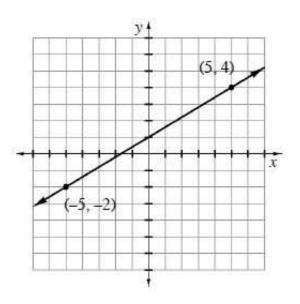
c. Now find the inverses of f(x) and g(x). What do you notice?

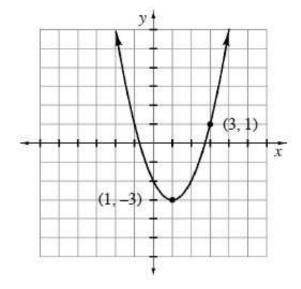
1-67.

- a. Study the table for the functions f(x) and g(x) below. f(x) does not have an inverse function. Explain why not.
- b. Evaluate.

i.
$$g^{-1}(2)$$

ii.
$$f(g^{-1}(2))$$


iii.
$$g^{-1}(g(-2))$$


c. If
$$h(3) = 4$$
 and $j(x) = h^{-1}(x)$, find $j(4)$.

-2	5	-3
-1	8	-1
0	9	0
1	8	2
2	5	3

1-68. Find a possible function for each of the following graphs. Verify your equation on your graphing calculator. <u>1-69 HW eTool</u> (Desmos). <u>Homework Help</u>

a.

b.

1-69. Much of this course will focus on *change*. Examine two ways a line changes: Homework Help \(\)

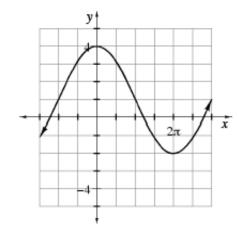
- a. Sketch f(x) = 2x + 3. Find f(0), f(1), f(2), and f(3). How are the function values changing as x increases?
- b. Sketch f(x) = -3x + 10. Find f(0), f(1), f(2), and f(3). How are the function values changing as x increases?

1-70. Selected values of a continuous *even* function are shown below. <u>1-70 HW</u> <u>eTool</u> (Desmos). <u>Homework Help §.</u>

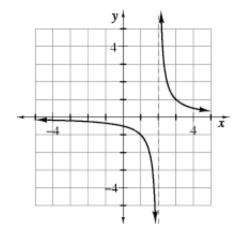
x	0	1	2	3
f(x)	0	2	4	6

- a. Find f(-1), f(-2) and f(-3).
- b. Sketch a possible graph of f(x) on the domain $-3 \le x \le 3$.
- c. Sketch another possible graph of f(x) on the domain $-3 \le x \le 3$.
- d. Could the graph of f(x) be a parabolic function? If so, find a possible equation of f(x). If not, explain.
- 1-71. Find the domain of each of the following functions. Homework Help \(\)

a.
$$f(x) = \sqrt{x+2}$$


b.
$$f(x) = \frac{1}{x-4} + 3$$

c.
$$f(x) = \log(x-4)$$

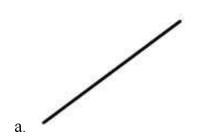

d.
$$f(x) = \sqrt{\frac{2-x}{x}}$$

- **1-72.** Sketch $f(x) = 3\sqrt{x+1}$ on $0 \le x \le 6$ three times, on three different sets of axes. <u>1-72 HW</u> <u>eTool(Desmos)</u>. <u>Homework Help §</u>
 - a. Review your work from problems 1-25 and 1-36. Use a similar process to approximate $A(f, 0 \le x \le 6)$ using:
 - i. Six left endpoint rectangles.
 - ii. Six right endpoint rectangles.
 - iii. Six trapezoids.
 - b. Which approximations were over (greater than) estimates of the actual area? Which were under estimates? Explain.
 - c. Which approximation is more accurate? Explain.
- **1-73.** Use interval notation to state the domain and range of each function below. Homework Help **\(\)**

a.

b.

1-74. A can of soda is 42°F when purchased. Over the course of the next few hours, the temperature of the soda slowly rises. During an experiment, Shibisha used a


thermometer and recorded the temperature at various times, *t*, shown in the table below. <u>1-74 HW eTool(Desmos)</u>. Homework Help .

time(min)	0	10	30	45	60	75	80
temp (°F)	42	51	58	63	66	68	69

- a. Sketch a graph of this temperature over time.
- b. When is the temperature changing the fastest? How does the graph tell you this?
- c. Approximately how fast is the temperature changing during the first 10 minutes? How can you tell?
- 1-75. Helen thinks $\sqrt{x^2} = x$. Felicia does not agree. Homework Help \(\)
 - a. Use various values of x to check whether or not Helen is correct.
 - b. Find an accurate expression for $\sqrt{x^2}$.
- **1-76.** Each of the continuous functions in the table below is increasing, but each increases differently. Match each graph below with the function that grows in a similar fashion in the table. Homework Help

X	1	2	3	4	5	6	7	8	9
f(x)	15.5	19.0	22.5	26.0	29.5	33.0	36.5	40.0	43.5

g(x)	1	2	4	8	16	32	64	128	256
h(x)	12	76	108	124	132	136	138	139	139.5

