Vocabulary and Concept Check

Change of Base Formula (p. 548)
common logarithm (p. 547)
exponential decay (p. 524)
exponential equation (p. 526)
exponential function (p. 524)
exponential growth (p. 524)
exponential inequality (p. 527)
logarithm (p. 531)
logarithmic equation (p. 533)
logarithmic function (p. 532)
logarithmic inequality (p. 533)
natural base, e (p. 554)
natural base exponential function (p. 554)
natural logarithm (p. 554)
natural logarithmic function (p. 554)
Power Property of Logarithms (p. 543)

Product Property of Logarithms (p. 541)

Property of Equality for Exponential Functions (p. 526)

Property of Equality for Logarithmic Functions (p. 534)
Property of Inequality for Exponential Functions (p. 527)
Property of Inequality for Logarithmic Functions (p. 534)
Quotient Property of Logarithms (p. 542)
rate of decay (p. 560)
rate of growth (p. 562)

State whether each sentence is true or false. If false, replace the underlined word(s) to make a true statement.

1. If $24^{2 y+3}=24^{y-4}$, then $2 y+3=y-4$ by the Property of Equality for Exponential Functions.
2. The number of bacteria in a petri dish over time is an example of exponential decay.
3. The natural logarithm is the inverse of the exponential function with base 10.
4. The Power Property of Logarithms shows that $\ln 9<\ln 81$.
5. If a savings account yields 2% interest per year, then 2% is the rate of growth.
6. Radioactive half-life is an example of exponential decay.
7. The inverse of an exponential function is a composite function.
8. The Quotient Property of Logarithms is shown by $\log _{4} 2 x=\log _{4} 2+\log _{4} x$.
9. The function $f(x)=2(5)^{x}$ is an example of a quadratic function.

Lesson-by-Lesson Review

10-1 Exponential Functions

See pages
523-530.

Concept Summary

- An exponential function is in the form $y=a b^{x}$, where $a \neq 0$, $b>0$, and $b \neq 1$.
- The function $y=a b^{x}$ represents exponential growth for $a>0$ and $b>1$, and exponential decay for $a>0$ and $0<b<1$.
- Property of Equality for Exponential Functions: If b is a positive number other than 1 , then $b^{x}=b^{y}$ if and only if $x=y$.
- Property of Inequality for Exponential Functions: If $b>1$, then $b^{x}>b^{y}$ if and only if $x>y$, and $b^{x}<b^{y}$ if and only if $x<y$.

Chapter 10 Study Guide and Review

Example Solve $64=2^{3 n+1}$ for n.
$64=2^{3 n+1} \quad$ Original equation
$2^{6}=2^{3 n+1} \quad$ Rewrite 64 as 2^{6} so each side has the same base.
$6=3 n+1$ Property of Equality for Exponential Functions
$\frac{5}{3}=n \quad$ The solution is $\frac{5}{3}$.
Exercises Determine whether each function represents exponential growth or decay. See Example 2 on page 525.
10. $y=5(0.7)^{x}$
11. $y=\frac{1}{3}(4)^{x}$

Write an exponential function whose graph passes through the given points.
See Example 3 on page 525.
12. $(0,-2)$ and $(3,-54)$
13. $(0,7)$ and $(1,1.4)$

Solve each equation or inequality. See Examples 5 and 6 on pages 526 and 527.
14. $9^{x}=\frac{1}{81}$
15. $2^{6 x}=4^{5 x+2}$
16. $49^{3 p+1}=7^{2 p-5}$
17. $9^{x^{2}} \leq 27^{x^{2}-2}$

10-2 Logarithms and Logarithmic Functions

Concept Summary

- Suppose $b>0$ and $b \neq 1$. For $x>0$, there is a number y such that $\log _{b} x=y$ if and only if $b^{y}=x$.
- Logarithmic to exponential inequality:

If $b>1, x>0$, and $\log _{b} x>y$, then $x>b y$.
If $b>1, x>0$, and $\log _{b} x<y$, then $0<x<b^{y}$.
and $\log _{b} x<\log _{b} y$ if and only if $x<y$.
Examples 1 Solve $\log _{9} n>\frac{3}{2}$.

$$
\begin{aligned}
\log _{9} n & >\frac{3}{2} & & \text { Original inequality } \\
n & >9^{\frac{3}{2}} & & \text { Logarithmic to exponential inequality } \\
n & >\left(3^{2}\right)^{\frac{3}{2}} & & 9=3^{2} \\
n & >3^{3} & & \text { Power of a Power } \\
n & >27 & & \text { Simplify. }
\end{aligned}
$$

Examples

$\log _{7} x=2 \rightarrow 7^{2}=x$
$\log _{2} x>5 \rightarrow x>2^{5}$
$\log _{3} x<4 \rightarrow 0<x<3^{4}$

2 Solve $\log _{3} 12=\log _{3} 2 x$.

$$
\begin{aligned}
\log _{3} 12 & =\log _{3} 2 x & & \text { Original equation } \\
12 & =2 x & & \text { Property of Equality for Logarithmic Functions } \\
6 & =x & & \text { Divide each side by } 2 .
\end{aligned}
$$

Exercises Write each equation in logarithmic form. See Example 1 on page 532.
18. $7^{3}=343$
19. $5^{-2}=\frac{1}{25}$
20. $4^{\frac{3}{2}}=8$

Write each equation in exponential form. See Example 2 on page 532.
21. $\log _{4} 64=3$
22. $\log _{8} 2=\frac{1}{3}$
23. $\log _{6} \frac{1}{36}=-2$

Evaluate each expression. See Examples 3 and 4 on pages 532 and 533 .
24. $4^{\log _{4} 9}$
25. $\log _{7} 7^{-5}$
26. $\log _{81} 3$
27. $\log _{13} 169$

Solve each equation or inequality. See Examples 5-8 on pages 533 and 534.
28. $\log _{4} x=\frac{1}{2}$
29. $\log _{81} 729=x$
30. $\log _{b} 9=2$
31. $\log _{8}(3 y-1)<\log _{8}(y+5)$
32. $\log _{5} 12<\log _{5}(5 x-3)$
33. $\log _{8}\left(x^{2}+x\right)=\log _{8} 12$

10-3 Properties of Logarithms

Concept Summary

- The logarithm of a product is the sum of the logarithms of its factors.
- The logarithm of a quotient is the difference of the logarithms of the numerator and the denominator.
- The logarithm of a power is the product of the logarithm and the exponent.

Example Use $\log _{12} 9 \approx 0.884$ and $\log _{12} 18 \approx 1.163$ to approximate the value of $\log _{12} 2$.

$$
\begin{aligned}
\log _{12} 2 & =\log _{12} \frac{18}{9} & & \text { Replace } 2 \text { with } \frac{18}{9} \\
& =\log _{12} 18-\log _{12} 9 & & \text { Quotient Property } \\
& \approx 1.163-0.884 \text { or } 0.279 & & \text { Replace } \log _{12} 9 \text { with } 0.884 \text { and } \log _{12} 18 \text { with } 1.163 .
\end{aligned}
$$

Exercises Use $\log _{9} 7 \approx 0.8856$ and $\log _{9} 4 \approx 0.6309$ to approximate the value of each expression. See Examples 1 and 2 on page 542.
34. $\log _{9} 28$
35. $\log _{9} 49$
36. $\log _{9} 144$

Solve each equation. See Example 5 on page 543.
37. $\log _{2} y=\frac{1}{3} \log _{2} 27$
38. $\log _{5} 7+\frac{1}{2} \log _{5} 4=\log _{5} x$
39. $2 \log _{2} x-\log _{2}(x+3)=2$
40. $\log _{3} x-\log _{3} 4=\log _{3} 12$
41. $\log _{6} 48-\log _{6} \frac{16}{5}+\log _{6} 5=\log _{6} 5 x$
42. $\log _{7} m=\frac{1}{3} \log _{7} 64+\frac{1}{2} \log _{7} 121$

10-4

See pages 547-551.

Common Logarithms

Concept Summary

- Base 10 logarithms are called common logarithms and are usually written without the subscript 10: $\log _{10} x=\log x$.
- You use the inverse of logarithms, or exponentiation, to solve equations or inequalities involving common logarithms: $10^{\log x}=x$.
- The Change of Base Formula: $\log _{a} n=\frac{\log _{b} n}{\log _{b} a} \leftarrow \log$ base b original number

Example Solve $5^{x}=7$.

$$
5^{x}=7 \quad \text { Original equation }
$$

$\log 5^{x}=\log 7 \quad$ Property of Equality for Logarithmic Functions
$x \log 5=\log 7 \quad$ Power Property of Logarithms

$$
\begin{array}{ll}
x=\frac{\log 7}{\log 5} & \text { Divide each side by } \log 5 . \\
x \approx \frac{0.8451}{0.6990} \text { or } 1.2090 & \text { Use a calculator. }
\end{array}
$$

Exercises Solve each equation or inequality. Round to four decimal places.
See Examples 3 and 4 on page 548.
43. $2^{x}=53$
44. $2.3^{x^{2}}=66.6$
45. $3^{4 x-7}<4^{2 x+3}$
46. $6^{3 y}=8^{y-1}$
47. $12^{x-5} \geq 9.32$
48. $2.1^{x-5}=9.32$

Express each logarithm in terms of common logarithms. Then approximate its value to four decimal places. See Example 5 on page 549.
49. $\log _{4} 11$
50. $\log _{2} 15$
51. $\log _{20} 1000$

10-5 Base e and Natural Logarithms

See pages 554-559.

Concept Summary

- You can write an equivalent base e exponential equation for a natural logarithmic equation and vice versa by using the fact that $\ln x=\log _{e} x$.
- Since the natural base function and the natural logarithmic function are inverses, these two functions can be used to "undo" each other.
$e^{\ln x}=x$ and $\ln e^{x}=x$
Example Solve $\ln (x+4)>5$.

$$
\begin{aligned}
\ln (x+4) & >5 & & \text { Original inequality } \\
e^{\ln (x+4)} & >e^{5} & & \text { Write each side using exponents and base e. } \\
x+4 & >e^{5} & & \text { Inverse Property of Exponents and Logarithms } \\
x & >e^{5}-4 & & \text { Subtract 4 from each side. } \\
x & >144.4132 & & \text { Use a calculator. }
\end{aligned}
$$

Exercises Write an equivalent exponential or logarithmic equation.
See Example 3 on page 555.
52. $e^{x}=6$
53. $\ln 7.4=x$

Evaluate each expression. See Example 4 on page 555.
54. $e^{\ln 12}$
55. $\ln e^{7 x}$

Solve each equation or inequality.
See Examples 5 and 7 on pages 555 and 556.
56. $2 e^{x}-4=1$
57. $e^{x}>3.2$
58. $-4 e^{2 x}+15=7$
59. $\ln 3 x \leq 5$
60. $\ln (x-10)=0.5$
61. $\ln x+\ln 4 x=10$

10-6 Exponential Growth and Decay

Concept Summary

- Exponential decay: $y=a(1-r)^{t}$ or $y=a e^{-k t}$
- Exponential growth: $y=a(1+r)^{t}$ or $y=a e^{k t}$

Example BIOLOGY A certain culture of bacteria will grow from 500 to 4000 bacteria in

 1.5 hours. Find the constant k for the growth formula. Use $y=a e^{k t}$.| y | $=a e^{k t}$ | | Exponential growth formula |
| ---: | :--- | ---: | :--- |
| 4000 | $=500 e^{k(1.5)}$ | | Replace y with 4000, a with 500, and t with 1.5. |
| 8 | $=e^{1.5 k}$ | | Divide each side by 500. |
| $\ln 8$ | $=\ln e^{1.5 k}$ | | Property of Equality for Logarithmic Functions |
| $\ln 8$ | $=1.5 k$ | | Inverse Property of Exponents and Logarithms |
| $\frac{\ln 8}{1.5}$ | $=k$ | | Divide each side by 1.5. |
| 1.3863 | $\approx k$ | | Use a calculator. |

Exercises See Examples 1-4 on pages 560-562.
62. BUSINESS Able Industries bought a fax machine for $\$ 250$. It is expected to depreciate at a rate of 25% per year. What will be the value of the fax machine in 3 years?
63. BIOLOGY For a certain strain of bacteria, k is 0.872 when t is measured in days. How long will it take 9 bacteria to increase to 738 bacteria?
64. CHEMISTRY Radium-226 decomposes radioactively. Its half-life, the time it takes for half of the sample to decompose, is 1800 years. Find the constant k in the decay formula for this compound.
65. POPULATION The population of a city 10 years ago was 45,600 . Since then, the population has increased at a steady rate each year. If the population is currently 64,800, find the annual rate of growth for this city.

