February 6th/7th, 2012

Jopic: Graphing/Writing Anadratics in Vertex-Torm

Zuestion: Why is vertex form useful? How is completing the square for vertex form different from completing the square for solving?

 $\frac{\omega\omega m - V\rho}{\# 1.} \times^{2} + 34x = 0$ $\times^{2} + 34x + 289 = 289 \left(\frac{34}{2}\right)^{2}$ $(17)^{2} = 289$ $(17)^{2}$

2)
$$2 \times^2 - 5 \times + 7 = 3$$

 $2 \times^2 - 5 \times = -4$
 $2 \times^2 - 5 \times = -2$
 $2 \times^2 - 5 \times = -2$
 $2 \times - \frac{5}{2} \times = -2$
 $2 \times - \frac{5}{2} \times + \frac{25}{16} = -2 + \frac{25}{16}$
 $2 \times - \frac{5}{2} \times + \frac{25}{16} = -\frac{32}{16} + \frac{25}{16}$
Here you could set up the diamond and factor. However, you know that you have a perfect square... so just do $2 \times - \frac{5}{4} = \pm \sqrt{-\frac{7}{16}}$
 $2 \times - \frac{5}{4} = \pm \sqrt{-\frac{7}{16}}$

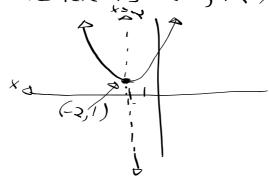
Notes. 6.6. Vertex-form
$$y = a(x-h)^{2} + k$$

$$f(x) = a(x-h)^{2} + k$$

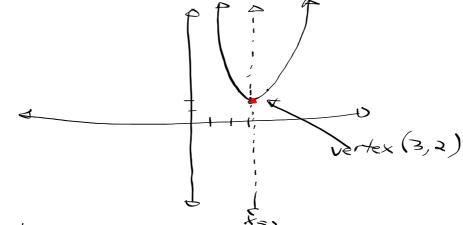
Example 1.) Graph

$$y = (x + 2)^{2} + 1$$
 $y = a(x - h)^{2} + k$
 $a = 1 \quad h = -2 \quad k = 1$
 $y = 1(x - (-2))^{2} + 1$
 $= (x + 2)^{2} + 1$

- · The axis of symmetry is x=h
- · The vertex is (h, K)



Ex2) Graph $y = (x-3)^2 + 2$ a = 1 h = 3 k = 2



As |a| increase, the graph narrows
As |a| gets closer to zero, it fattens

Ex3. Write
$$y=x^2+8x-5$$
 in vertex-form

We want this $y=a(x-h)^2+k$
 $y=a(x-h)^2+k$

Complete the $y=(x^2+8x+16)-16-5$

square, and $y=(x^2+8x+16)-16-5$

ond the opposite $y=(x^2+4)^2-21$

Ex 4. Write $y=x^2+2x+4$ in vertex for $y=(x^2+2x+4)$ in vertex for $y=(x^2+2x+4)$ in $y=(x^2+2x+4)$

Ex 4. Write
$$y = x^2 + 2x + 4$$
 in vertex form

 $(\frac{b}{2})^2 = (\frac{2}{2})^2$
 $y = (x^2 + 2x) + 4$
 $= 1^2 = 1$
 $y = (x^2 + 2x + 1) - 1 + 4$
 $y = (x + 1)^2 + 3$

Ex 5. Write in vertex-form:
$$y = -3x^2 + 6x - 1$$
 We are going to complete the square for these terms...
$$y = -3x^2 + 6x - 1$$
Notice: When we completed the square we "visually" added 1. The one is inside the parentheses which means that it is really being multiplied by -3 which means that it is really being multiplied by -3 which means that it is a -3 in disguise. We need to add 3 to balance it!!

$$y = -3(x^2 - 2x) - 1$$

$$y = -3(x^2 - 2x + 1) + 3 - 1$$

Example 6: Write
$$y = -2x^2 - 4x + 2$$
 in vertex-form.
 $y = -2(x^2 + 2x) + 2$
 $y = -2(x^2 + 2x + 1) + 2 + 2$
 $y = -2(x + 1)^2 + 4$

homework: add ex 4. page 325

page 326 # 15-43 odd 55,56 (402. #53)