Section 2.4 Dividing Polynomials; Remainder and Factor Theorems

This whole assignment will be due tomorrow!

Example

Divide using synthetic division.

The Remainder Theorem

f(1)=9

If the polynomial f(x) is divided by x - c, then the remainder is f(c).

If you are given the function $f(x)=x^3-4x^2+5x+3$ and you want to find f(2), then the remainder of this function when divided by x-2 will give you f(2)

$$f(1) \text{ for } f(x) = \underbrace{6x^2 - 2x + 5}_{X - 1} \text{ is}$$

$$f(1) \text{ for } f(x) = \underbrace{6x^2 - 2x + 5}_{X - 1} \text{ is}$$

$$f(1) \text{ for } f(x) = \underbrace{6x^2 - 2x + 5}_{X - 1} \text{ is}$$

$$f(1) \text{ for } f(x) = \underbrace{6x^2 - 2x + 5}_{X - 1} \text{ is}$$

$$f(1) \text{ for } f(x) = \underbrace{6x^2 - 2x + 5}_{X - 1} \text{ is}$$

$$f(1) \text{ for } f(x) = \underbrace{6x^2 - 2x + 5}_{X - 1} \text{ is}$$

$$f(1) \text{ for } f(x) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(1) \text{ for } f(x) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(1) \text{ for } f(x) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(1) \text{ for } f(x) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(1) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(1) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(1) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(1) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(1) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(1) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(1) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(1) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(1) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(1) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(1) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(2) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(3) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(3) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(3) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(3) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(3) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(3) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(3) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(3) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(4) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(3) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(3) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(3) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(3) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(3) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(3) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(3) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(3) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(3) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(3) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(3) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{ is}$$

$$f(4) = \underbrace{6(1)^2 - 2(1) + 5}_{X - 1} \text{$$

Example

Use synthetic division and the remainder theorem to find the indicated function value.

The Factor Theorem

Let f(x) be a polynomial.

a. If f(c) = 0, then x - c is a factor of f(x).

b. If x - c is a factor of f(x), then f(c) = 0.

Solve the equation $2x^3-3x^2-11x+6=0$ given that 3 is a zero of $f(x)=2x^3-3x^2-11x+6$. The factor theorem tells us that x-3 is a factor of f(x). So we will use both synthetic division and long division to show this and to find another factor.

3 2 -3 -11 6
$$\frac{6 - 9 - 6}{2 - 3 - 2 - 0}$$

$$\frac{6}{2} \frac{9 - 6}{3 - 2 - 0}$$
The remainder, 0, varifies that $x = 3$ is a factor of $2x^3 - 3x^2 - 11x + 6$.

Equivalently, $2x^3 - 3x^2 - 11x + 6 = (x - 3)(2x^2 + 3x - 2)$.

Another factor

Example

Solve the equation $5x^2 + 9x - 2 = 0$ given that -2 is a zero of $f(x) = 5x^2 + 9x - 2$

$$(5x-1)(x+2)=0$$

 $5x-1=0$
 $x=1=0$
 $x=1=0$
 $x=1=0$

Example

Solve the equation x^3 - $5x^2$ + 9x - 45 = 0 given that 5 is a zero of f(x)= x^3 - $5x^2$ + 9x - 45. Consider all complex number solutions.

$$5(5)=0$$

 $x-5$ is a factor

$$x^{2} + 9 = 0$$
 $x - 5 = 6$
 $x^{2} = 9$
 $x = \frac{1}{3}$ $x = 5$

Use Synthetic Division and the Remainder
Theorem to find the value of f(2) for the function

$$f(x)=x^3+x^2-11x+10$$

- (a) 2
- (b) 0
- (c) -5
- (d) -12

2.4 1-41 odd