Section 3.1 Exponential Functions

Definition of the Exponential Function

The exponential function f with base b is defined by

$$f(x) = b^x$$
 or $y = b^x$,

where b is a positive constant other than 1 (b > 0 and $b \ne 1$) and x is any real number.

$$f(x)=2^x \qquad \qquad g(x)=10^x \qquad \qquad h(x)=3^{x+1} \qquad \qquad j(x)=\left(\frac{1}{2}\right)^{x-1}.$$
 Base is 2. Base is 10. Base is 3.

Each of these functions has a constant base and a variable exponent. By contrast, the following functions are not exponential functions:

$$F(x)=x^2$$
 $G(x)=1^x$ $H(x)=(-1)^x$ $J(x)=x^x$.

Variable is the base and not the exponent.

The base of an exponential function must be a positive constant other than 1.

The base of an exponential function must be positive.

Example

The exponential equation $f(x) = 13.49(.967)^x - 1$ predicts the number of O-rings that are expected to fail at the temperature x° F on the space shuttles. The O-rings were used to seal the connections between different sections of the shuttle engines. Use a calculator to find the number expected to fail at the temperature of 40 degrees.

$$f(40) = 13.49(.967)^{40} - 1$$
$$= 2.52$$

Graphing Exponential Functions

Characteristics of Exponential Functions of the Form $f(x) = b^x$

- **1.** The domain of $f(x) = b^x$ consists of all real numbers: $(-\infty, \infty)$. The range of $f(x) = b^x$ consists of all positive real numbers: $(0, \infty)$.
- **2.** The graphs of all exponential functions of the form $f(x) = b^x$ pass through the point (0, 1) because $f(0) = b^0 = 1(b \ne 0)$. The y-intercept is 1.
- 3. If b > 1, $f(x) = b^x$ has a graph that goes up to the right and is an increasing function. The greater the value of b, the steeper the increase.
- **4.** If 0 < b < 1, $f(x) = b^x$ has a graph that goes down to the right and is a decreasing function. The smaller the value of b, the steeper the decrease.
- **5.** $f(x) = b^x$ is one-to-one and has an inverse that is a function.
- **6.** The graph of $f(x) = b^x$ approaches, but does not touch, the *x*-axis. The *x*-axis, or y = 0, is a horizontal asymptote.

Example

Graph the following two equations: $f(x) = \left(\frac{1}{4}\right)^x$, $f(x) = \left(4\right)^x$

Draw the asymptotes.

Transformations of Exponential Functions

Transformation	Equation	Description
Vertical translation	$g(x) = b^{x} + c$ $g(x) = b^{x} - c$	 Shifts the graph of f(x) = b^x upward c units. Shifts the graph of f(x) = b^x downward c units.
Horizontal translation	$g(x) = b^{x+c}$ $g(x) = b^{x-c}$	 Shifts the graph of f(x) = b^x to the left c units. Shifts the graph of f(x) = b^x to the right c units.
Reflection	$g(x) = -b^{x}$ $g(x) = b^{-x}$	 Reflects the graph of f(x) = b^x about the x-axis. Reflects the graph of f(x) = b^x about the y-axis.
Vertical stretching or shrinking	$g(x) = cb^x$	 Vertically stretches the graph of f(x) = b^x if c > 1. Vertically shrinks the graph of f(x) = b^x if 0 < c < 1.
Horizontal stretching or shrinking	$g(x) = b^{ex}$	 Horizontally shrinks the graph of f(x) = b^x if c > 1 Horizontally stretches the graph of f(x) = b^x if 0 < c < 1.

Example

Use the graph of $f(x)=4^x$ to obtain the graph of $g(x)=4^x+3$.

What is the domain and range of each function?

Y.	f(x)=4x+3
- 2	346
-1	3-25
0	4
۱ ٔ	7
2	19

Example

Use the graph of $f(x)=4^x$ to obtain the graph of $g(x)=4^{x-2}$ Find the domain and range for the g(x) function.

Example Use the graph of $f(x)=4^x$ to obtain the graph of $g(x)=2\cdot 4^{-x}$ Find the domain and range for the g(x) function.

The Natural Base e

n	$\left(1+\frac{1}{n}\right)^n$	
1	2	
2	2.250000	
5	2.48832000	
10	2.59374246	
100	2.704813829	
1000	2.716923932	
10,000	2.718145927	
100,000	2.718268237	
1,000,000	2.718280469	
1,000,000,000	2.718281827	
As $n \to \infty$, $\left(1 + \frac{1}{n}\right)^n \to e$.		

The values of $\left(1+\frac{1}{n}\right)^n$ for increasingly large values of n. As $n \to \infty$ the approximate value of e to nine decimal places is $e \approx 2.718281827$. The irrational number e, approximately 2.72, is called the natural base. The function $f(x)=e^x$ is called the natural exponential function.

For the graph of $f(x)=4^{x+3}-1$, What is the domain and range?

$$D:(-(a)\infty), R:(-1,\infty)$$

$$D: (-(b), \infty), R: (-1, \infty)$$

 $D: (-(b), \infty), R: (-\infty, \infty)$

$$D: (-\infty, \infty)$$

$$D: [-1, \infty), R: [-1, \infty)$$

Cornell Notes 3.2