Section 3.4 Exponential and Logarithmic Equations

Exponential Equations

$$2^{x} = 4$$

$$x=2$$

$$2^{\times} = 2^{\circ}$$

$$x = 2$$

Solving Exponential Equations by Expressing Each Side as a Power of the Same Base

If
$$b^M = b^N$$
, then $M = N$.

Express each side as a Set the exponents power of the same base. equal to each other.

- 1. Rewrite the equation in the form $b^M = b^N$.
- **2.** Set M = N.
- 3. Solve for the variable.

if
$$b^m = b^N$$
 then $m = N$

Using Natural Logarithms to Solve Exponential Equations

- 1. Isolate the exponential expression.
- 2. Take the natural logarithm on both sides of the equation.
- 3. Simplify using one of the following properties:

$$\ln b^x = x \ln b$$
 or $\ln e^x = x$.

4. Solve for the variable.

Example

Solve for x:
$$64^{3x} = 32^{2+x}$$

$$\left(2^{6}\right)^{3\chi} = \left(2^{5}\right)^{2+\chi}$$

$$2^{18x} = 2^{10+5x}$$

$$18x = 10 + 5x$$

$$13 \times = 10$$

$$13 \times = \frac{10}{13}$$

Solve for x: $3^x = 21$

$$ln 3^{*} = ln 21$$
 $x \cdot ln 3 = ln 21$
 $ln 3$

$$x = ln 21$$
 $ln 3$

$$x = ln 21$$
 $ln 3$

$$x = ln 21$$
 $ln 3$

$$x = \frac{3.04}{1.09} = 2.77$$

Example

Solve for x: $3^{x+2} = 7^{3x-1}$

$$\ln 3^{x+2} = \ln 7^{3x-1}$$
 $(x+2) \ln 3 = (3x-1) \ln 7$
 $\times \ln 3 + 2 \ln 3 = 3 \times \ln 7 - \ln 7$

Why did we move the stuff with the x to one side?

$$\times \frac{(\ln 3 - 3 \ln 7)}{\ln 3 - 3 \ln 7} = -\ln 7 - 2 \ln 3$$

$$\times = -\ln 7 - 2 \ln 3$$

× ln3-3×ln7=-ln7-2ln3

$$\chi = \frac{-\ln 7 - 2\ln 3}{\ln 3 - 3\ln 7}$$

$$\vee$$
 $\overline{}$

Logarithmic Equations

$$log_b X = y$$

$$\mathcal{P}_{\lambda} = X$$

Using the Definition of a Logarithm to Solve Logarithmic Equations

- 1. Express the equation in the form $\log_b M = c$.
- 2. Use the definition of a logarithm to rewrite the equation in exponential form:

$$\log_b M = c \quad \text{means} \quad b^c = M$$
Logarithms are exponents.

- 3. Solve for the variable.
- **4.** Check proposed solutions in the original equation. Include in the solution set only values for which M>0.

Logarithmic expressions are defined only for logarithms of positive real numbers. Always check proposed solutions of a logarithmic equation in the original equation. Exclude from the solution set any proposed solution that produces the logarithm of a negative number or the logarithm of 0.

$$\log_{6} x = y$$
 $6 = 2$
 $y = (x+5)$
 $5 = 4$

Solve for x:
$$\log_2(x+5) = 4$$

$$2^{4} = x+5$$

$$16 = x+5$$

$$1/ = x$$

Solve for x:
$$\log_2(x+5) = 4$$

$$2^4 = x+5$$

$$\frac{16 = x+5}{1/3 = x}$$
Solve for x: $\log_2(x+5) = 4$

$$\frac{16 = x+5}{1/3 = x+5}$$

Example

Solve for x:
$$4\ln(3x) = 12$$

4.ln(3x)=12
ln(3x)=3
loge (3x)=3

$$\frac{3}{3} = \frac{3}{3}$$

 $\frac{2}{3} = \frac{3}{3}$
 $\frac{2}{3} = \frac{3}{3}$

Solve for x:
$$\ln(1) - \ln(3x-2) = \ln(x)$$

$$\ln\left(\frac{1}{3x-2}\right) = \ln(x)$$

$$\left(\frac{1}{3x-2}\right) = \ln(x)$$

$$\left(\frac{1}{3x-2}\right)$$

Using the One-to-One Property of Logarithms to Solve Logarithmic Equations

- **1.** Express the equation in the form $\log_b M = \log_b N$. This form involves a single logarithm whose coefficient is 1 on each side of the equation.
- **2.** Use the one-to-one property to rewrite the equation without logarithms: If $\log_b M = \log_b N$, then M = N.
- 3. Solve for the variable.
- **4.** Check proposed solutions in the original equation. Include in the solution set only values for which M>0 and N>0.

Example

Solve for x: $3\log x = -\log 27$

Solve for x:
$$log(x+3) = log(x+3) + log x$$

Applications

Visualizing the Relationship Between Blood Alcohol Concentration and the Risk of a Car Accident

Medical research indicates that the risk of having a car accident increases exponentially as the concentration of alcohol in the blood increases. The risk is modeled by $R=6e^{12.77x}$

where x is the blood alcohol concentration and R, given as a percent, is the risk of having a car accident. What blood alcohol level corresponds to an 80% chance of an automobile accident?

Example

Formula for Compound Interest A=P $\left(1+\frac{r}{n}\right)^{nt}$

How long will it take \$3,000 to grow to \$30,000 at 5% annual interest compounded semi-annually.

$$e^{6}$$
 (a)
 e^{6} (b)
(c)
 e^{3} (d)

$$e^{3} - 6$$

Solve for x: $7^{2x-1} = 3^4$

$$\frac{4 \ln 3}{2 \ln 7}$$

$$\frac{\ln 7 \text{ (b)} \text{ h 3}}{2 \ln 7}$$

$$\frac{\ln 7}{4 \ln 3}$$

$$\frac{4 \ln 3}{2 \ln 7}$$

$$\frac{2 \ln 7}{2 \ln 7}$$