Objective:

- Compute limits from graphs
- Explain what a limit is
- Compute a limit from a table of value

Topic: 11.1 Finding Limits Using Tables and Graphs

What is a limit? Read 11.1.... What does it say that Mr. Wee did not talk about?

What kind of function is this? Rational

$$f(x) = \frac{1}{x^2 - 2x - 3} = \frac{1}{(x-3)(x+1)}$$

×	5(x)
0	-13
4	-Jv
-2	$\frac{1}{(-5)(-1)} = \frac{1}{5}$
1	$\epsilon_{2)(2)} = -\frac{1}{4}$
2	(-1)(3) = -1/3
·	
·	

What value does the function f(x) equal as x approaches 3 from the positive side?

$$\lim_{x\to 3^+} \frac{1}{x^2-2x-3} = +0$$

$$f(x) = \frac{1}{x^2 - 2x_0 - 3}$$

3.) Liven
$$S(x) = \frac{1}{x^2 - 2x - 3}$$

find
$$\lim_{x\to 0^{-1}} 5(x) = 100$$

$$\lim_{x\to 0} f(x) = -\frac{1}{3}$$

$$f(x) = \frac{1}{\sqrt{3} - 2x^{3}} = \frac{1}{0 - 0^{-3}} = -\frac{1}{3}$$

As we approach x=0 will we ever get to f(x)=-1/3

Why can't we get to f(x)=-1/3??

okay... yes if we go to 0 and we get to 0 then f(x)=-1/3....; however, we will never get to 0 because that is what the limit is all about

An Introduction to Limits

Suppose that you and a friend are walking along the graph of the function

$$f(x) = \frac{x^2 - 4}{x - 2}.$$

Figure 11.1 illustrates that you are walking uphill and your friend is walking downhill. Because 2 is not in the domain of the function, there is a hole in the graph at x = 2. Warning signs along the graph might be appropriate: Caution: f(2) is undefined! If you or your friend reach 2, you will fall through the hole and splatter onto the x-axis.

Figure 11.1 Walking along the graph of f, very close to 2

Technology

A graphing utility with a TABLE feature can be used to generate the entries in Table 11.1. In TBLSET, change Auto to Ask for Indpnt, the independent variable. Here is a typical screen that verifies Table 11.1.

X	V_1			
1.99	3.99 3.999			
1.9999 2.0001	3.9999 4.0001			
2.001 2.01	4.001 4.01			
U4 B7 V2 - 4 \ 27 V - 2 \				
Y10(A4-4)/(A-2/				

Limit Notation and Its Description

Suppose that f is a function defined on some open interval containing the number a. The function f may or may not be defined at a. The **limit notation**

$$\lim_{x \to a} f(x) = L$$

is read "the limit of f(x) as x approaches a equals the number L." This means that as x gets closer to a, but remains unequal to a, the corresponding values of f(x) get closer to L.

Finding Limits Using Tables

Table 11.2

x approaches 4 from the left. x approaches 4 from the right.							
x	3.99	3.999	3.9999		4.0001	4.001	4.01
$f(x) = 3x^2$	47.7603	47.9760	47.9976	→ ←	48.0024	48.0240	48.2403
	f(x) gets closer to 48.			f(x) go	ets closer	to 48.	

From Table 11.2, it appears that as x gets closer to 4, the values of $3x^2$ get closer to 48. We infer that

$$\lim_{x \to 4} 3x^2 = 48.$$

Technology

The graph of $f(x) = \frac{\sin x}{x}$ illustrates that as x gets closer to 0, the values of f(x) are approaching 1. This supports our inference that

Table 11.3

From Table 11.3, it appears that as x gets closer to 0, the values of $\frac{\sin x}{x}$ get closer to 1. We infer that

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Use a table to find the limit: $\lim_{x\to 2} \frac{x^2-4}{x-2}$

Finding Limits Using Graphs

Figure 11.2 In each graph, as x gets closer to a, the values of f get closer to L: $\lim_{x \to a} f(x) = L$.

Use the graph to determine the limit: $\lim_{x\to 0} x \sin x$

Use the graph to determine the limit: $\lim_{x\to 0} -x^2 + 3$

One Sided Limits

Figure 11.5 As x approaches 2 from the left (red arrow) or from the right (blue arrow), values of f(x) get closer to 4.

lim _{r→2}	x^2	=	4
--------------------	-------	---	---

x	1.99	1.999	1.9999 →
$f(x) = x^2$	3.9601	3.9960	3.9996 →

$$\lim_{x \to 2^+} x^2 = 4$$

x	← 2.0001	2.001	2.01
$f(x) = x^2$	← 4.0004	4.0040	4.0401

One-Sided Limits

Left-Hand Limit The limit notation

$$\lim_{x \to a^{-}} f(x) = L$$

is read "the limit of f(x) as x approaches a from the left equals L" and is called the **left-hand limit**. This means that as x gets closer to a, but remains less than a, the corresponding values of f(x) get closer to L.

Right-Hand Limit The limit notation

$$\lim_{x \to a^+} f(x) = L$$

is read "the limit of f(x) as x approaches a from the right equals L" and is called the **right-hand limit**. This means that as x gets closer to a, but remains greater than a, the corresponding values of f(x) get closer to L.

Equal and Unequal One-Sided Limits

One-sided limits can be used to show that a function has a limit as x approaches a.

$$\lim_{x \to a} f(x) = L \text{ if and only if both}$$

$$\lim_{x \to a^{-}} f(x) = L \text{ and } \lim_{x \to a^{+}} f(x) = L.$$

One-sided limits can be used to show that a function has no limit as x approaches a.

If
$$\lim_{x \to a^{-}} f(x) = L$$
 and $\lim_{x \to a^{+}} f(x) = M$, where $L \neq M$,
$$\lim_{x \to a} f(x)$$
 does not exist.

Figure 11.6 As x approaches 1 from the left (red arrow) and from the right (blue arrow), values of f(x) do not get closer to a single number.

Study Tip

The word from is helpful in distinguishing left- and right-hand limits. A left-hand limit means you approach the given x-value from the left. It does not mean that you approach toward the left on the graph. A right-hand limit means you approach the given x-value from the right. It does not mean you approach toward the right on the graph.

Use the graph of the piecewise function f to find $\lim_{x \to -2-} f(x)$

Example

Use the graph of the piecewise function f to find $\lim_{x \to -2+} f(x)$

Use the graph of the piecewise function f to find $\lim_{x \to 2+} f(x)$

Example

Use the graph of the piecewise function f to find $\lim_{x\to 2^-} f(x)$

Find $\lim_{x\to 2} f(x)$ given the graph of f(x).

(d) doesn't exist

Find $\lim_{x \to -\frac{1}{2}} f(x)$ given the graph of f(x).

- (a) 3 (b) -4 (c) 1

Homework: page 1013-1014: 1-31 odds

Self- correct: Put your score on top... count parts as separate questions....

Graph
$$S(x) = 2x - 3$$

Evaluate
$$\lim_{x \to 0} S(x)$$