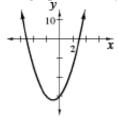

Lesson 2.1.3

2-31. See below:

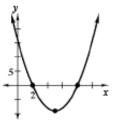
- a. (-9, 0), opens up, none
- b. (0, 7), opens up, none
- c. (0, 0), opens up, stretch
- d. (1, 0), opens up, compression
- e. (7, 6), opens down, none
- f. (-3, -8), opens up, stretch. See Suggested Lesson Activity section for strategies for making accurate graphs.
- **2-32.** Students should answer that they need the vertex and stretch factor (or *a*-value).
 - a. vertex at (7, -2), opens up

b. vertex at (-3, 1), opens up and compressed by one half.

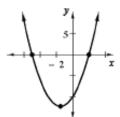


2-33. See below:

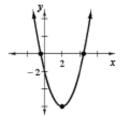
- a. upward, a > 0, change 2 to -2
- b. 2, it is the coefficient of x^2 .
- c. The vertex is (-1, -32).
 - i. (-5, 0) and (3, 0)

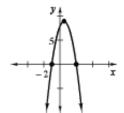

ii. The vertex is directly between the x-intercepts. Its x coordinate is -1.

d. See graph below. $y = 2(x + 1)^2 - 32$



2-34. See below:


a. (8, 0), (2, 0), x-avg. $= 5, f(5) = -9, \text{ vertex}(5, -9), p(x) = (x - 5)^2 - 9$


b. (-5, 0), (2, 0), x-avg. = $-\frac{3}{2}$, $f(\frac{3}{2}) = -\frac{49}{4}$, vertex(-1.5, -12.25), $f(x) = (x + \frac{3}{2})^2 - \frac{49}{4}$

c. $(2 \pm \sqrt{6}, 0)$, x-avg. = 2, g(2) = -6, $g(x) = (x - 2)^2 - 6$

d. (2, 0), (-1, 0), x-avg. $= \frac{1}{2}, h(\frac{1}{2}) = 9$, $vertex(\frac{1}{2}, 9), h(x) = -4(x - \frac{1}{2})^2 + 9$

2-35. See below:

a.
$$y = 0$$
 or 6

b.
$$n = 0 \text{ or } -5$$

c.
$$t = 0 \text{ or } 7$$

d.
$$x = 0 \text{ or } -9$$

e. There is no constant term when each equation is set equal to zero, so the variable is a common factor after like terms are collected.

2-36. See below:

a.
$$(7, -16), y = (x - 7)^2 - 16$$

b.
$$(2, -16) y = (x - 2)^2 - 16$$

c.
$$(7, -9), y = (x - 7)^2 - 9$$

d.
$$(2, -1)$$

2-37. See below:

a.
$$(2, -1)$$

b. When x = 2, $(x - 2)^2$ will equal zero and y = -1, the smallest possible value for y in the equation. So the y-value of the vertex is the minimum value in the range of the function.

2-38. See below:

a. 9.015 gigatons

b. $C(x) = 8(1.01)^{(x+2)}$ if x represents years since 2000 or $8.16(1.01)^x$.

2-39. Let students figure out what form is more useful.

a. 2

b. 1

c. 1

- d. 2
- e. 2
- f. 1
- g. Students check their predictions with a calculator
- h. If the factored version includes a perfect-square binomial factor, the parabola will touch at one point only.

2-40. See below:

- a. 4
- b. $\frac{1}{16x^4y^{10}}$
- c. 6*xy*²

2-41. See below:

- a. $\frac{8}{27}$
- b. $\frac{12}{27}$
- c. $\frac{6}{27}$
- d. $\frac{1}{27}$