Lesson 2.2.3

2-121. See below:

a. A vertical translation of a distance k.

b. A reflection across the x-axis.

c. A horizontal translation of a distance h.

d. A vertical dilation with a stretch (or shrink) factor of a. If a is negative, there is also a reflection across the x-axis.

2-122. See below:

a. See sample graphs below.

b. $f(-x) = (-x)^2 = x^2$, $f(-x) = (-x)^3 = -x^3$, $f(-x) = \frac{1}{-x} = -\frac{1}{x}$, $f(-x) = \sqrt{-x}$ for $x \le 0$ cannot be simplified, f(-x) = |-x| = |x|, $f(-x) = b^{-x} = \frac{1}{b^x}$

c. A reflection across the *y*-axis.

2-123. See below:

a. x^2 and |x|

b. $x^3, \frac{1}{x}$

c. b^x , $\sqrt{x} \cdot \sqrt{x}$ is niether because $f(x) = \sqrt{x}$ has the domian $x \ge 0$, and for that domain f(-x) is defined only for x = 0. Thus f(-x) neither equals f(x) nor -f(x).

2-125. See below:

- a. Neither
- b. Neither
- c. Even

2-126. See below:

a. See graph below.

b. See graph below.

c. Neither function is odd nor even.

2-127.
$$y = -\frac{3}{4}(x-2)^2 + 3$$

2-128. See below:

a.
$$x: (-1, 0), y: (0, 2), V: (-1, 0), y = 2(x + 1)^2$$
.

b.
$$x:(0,0), (2,0), y:(0,0), V:(1,1)y = -(x-1)^2 + 1$$

2-129. See below:

a.
$$y = x$$

b.
$$(\frac{1}{2}, \frac{1}{3})$$

c.
$$(\frac{1}{2}, \frac{1}{3})$$

d. The solution to the system is the point at which the lines intersect.

2-130. See below:

a.
$$t(n) = 20(\frac{1}{4})^n$$
 or $10(\frac{1}{4})^{n-1}$

b.
$$t(n) = -6n + 4$$

2-131. See below:

a.
$$x: (2, 0), (6, 0) y: (0, 2), \text{ vertex: } (4, -2), D: \text{ all real numbers, } R: y \ge -2$$

b.
$$x: (-4, 0), (2, 0), y: (0, 2), \text{ vertex } (-1, 3), D: \text{ all real numbers, } R: y \le 3$$