2.2.4 How do algebraic manipulations help to find a limit?

Evaluating Limits

So far you have looked at limits on graphs and in terms of continuity. Today we will apply algebraic computations to find limits and better understand graphs.

2-89. Complete the following.

- a. Yashar was trying to determine the following: $\lim_{x\to 2} \frac{x^2-2x}{x^2-4}$. When he substituted in x=2 he got $\frac{0}{0}$. Explain why Yashar cannot determine this limit it its current form.
- b. Meanwhile Hripsime rewrote the limit as $\lim_{x\to 2} \frac{x}{x+2}$. Explain what is happening on the graph at x=2.
- c. Determine the value of the limit in part (b).
- d. Explain why Hripsime's method is useful.
- **2-90.** Given the limits below, state the algebraic method(s) that could help you simplify.
 - a. $\lim_{x \to 3} \frac{x^2 9}{x 3}$
 - b. $\lim_{x \to 3^+} \frac{1}{x-3}$
 - c. $\lim_{x \to 9} \frac{x-9}{\sqrt{x}-3}$
 - d. Which problem(s) above have limits that exists and which problem(s) have limits that do not exist? Explain the graphical significance of your answer.
- **2-91.** Evaluate the following limits.
 - a. $\lim_{x \to 1} \frac{2x^2 2}{x 1}$
 - b. $\lim_{x \to \infty} \frac{2x^2 7}{x^2 + 4x 1}$

c.
$$\lim_{x\to 0} \frac{2x^3-7}{3x^3+4x-5}$$

d.
$$\lim_{x \to 1} \frac{\sqrt{x-1}}{x-1}$$

e.
$$\lim_{x \to 4^{-}} \frac{5}{x-4}$$

f.
$$\lim_{x \to -\infty} \frac{x^2 - 1}{x + 2}$$

- **2-92.** For each problem below, complete the following tasks:
 - Find all horizontal asymptotes, if any, then find $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$.
 - Find all vertical asymptotes (V.A.) and holes, if any, then find $\lim_{x \to V.A.^+} f(x)$, $\lim_{x \to V.A.^-} f(x)$, and $\lim_{x \to \text{holes}} f(x)$

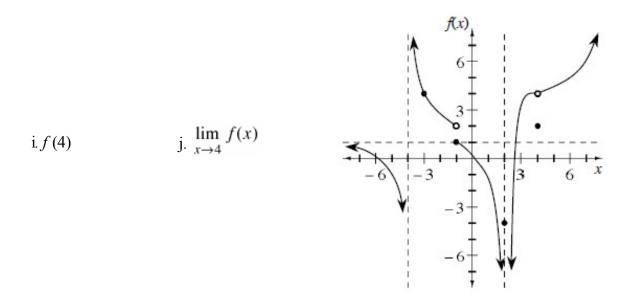
a.
$$f(x) = \frac{2(x-3)}{3x-15}$$

b.
$$f(x) = \arctan x$$

c.
$$f(x) = \frac{4(x-2)(x-3)}{x-2}$$

- **2-93.** f(x) is a continuous, odd function and $\lim_{x \to -\infty} f(x) = 5$. Sketch a graph of f.
- **2-94.** Using the graph below, find the following values. If the limit does not exist, explain why.

$$a.f(-4)$$


b.
$$\lim_{x \to -4} f(x)$$

$$\lim_{x \to -1^{-}} f(x)$$

e.
$$\lim_{x \to -1^+} f(x)$$
 f.
$$\lim_{x \to -1} f(x)$$

$$\lim_{x \to -1} f(x)$$

$$\lim_{x \to 2} f(x)$$

k. Is f(x) continuous at x = 4? Explain your reasoning using the formal definition of continuity.

2-95. Inscribed rectangles are below a curve. Circumscribed rectangles are above a curve. $\underline{\text{Help (Html5)}} \Leftrightarrow \underline{\text{Help (Java)}}$

For the function $y = \sqrt{4 - x^2}$, complete the following problems.

- a. Calculate the area from $-2 \le x \le 2$ using four inscribed rectangles
- b. Calculate the area from $-2 \le x \le 2$ using four circumscribed rectangles.
- c. Calculate the actual area using your answers to a and b.
- **2-96.** Suppose f(x) and g(x) are both discontinuous at x = 3. Using the table below, for which of the functions does the limit as x approaches 3 appear to exist? Justify your answer. $\underline{Help (Html5)} \Leftrightarrow \underline{Help (Java)}$

x	2.8	2.9	2.99	3	3.01	3.1	3.2
f(x)	6.97	6.98	6.99	?	7.01	7.02	7.03
g(x)	6.97	6.98	6.99	?	7.97	7.98	7.97

2-97. f(x) is an even function such that f(2) = 4 and f(10) = 20. Which of the following must be true? Could be

true? Must be false? Help (Html5) ⇔ Help (Java)

$$I. f(-10) = 20$$

II.
$$f(-2) = -4$$

III.
$$f(0) = 0$$

2-98. If 1 < a < b, which of the following logarithmic expressions represents a value that is negative? Between 0 and 1? Equal to 1? Greater than 1? $\underline{\text{Help (Html5)}} \Leftrightarrow \underline{\text{Help (Java)}}$

- I. $\log_a b$
- II. $\log_b \frac{1}{a}$

III. $\log_b a$

IV. $\log_a a$

2-99. Find the x- and y-intercepts of $x + 3 = 3^{3(y+1)}$. Help (Html5) \Leftrightarrow Help (Java)

2-100. Let $f(x) = x^2 - 9$, and $g(x) = 2x^2 - 12x + 18$. Find all horizontal asymptotes, vertical asymptotes, and holes (if any) for $y = \frac{f(x)}{g(x)}$ and $y = \frac{g(x)}{f(x)}$. Help (Html5) \Leftrightarrow Help (Java)

2-101. The region bounded by y = -x + 6 and the coordinate axes is rotated about the y-axis. Calculate the volume of the resulting solid. Help (Html5) \Leftrightarrow Help (Java)