Lesson 2.2.5

2-153. See below:

a. Overall $x \geq 0, y=40.00,45.45,40.90,41.35$...

First piece: $0 \leq x \leq 450, y=40$
Second piece: $450<x \leq 451, y=40.45$
Third piece: $451<x \leq 452,=40.90$
b. See solution to part (a).

2-154. Answers vary.

2-155. See below:

a. Solutions listed in bold in the table below.

x	-4	-3	-2	-1	0	1	2	3	4	5	6	7
$F(x)$	-2	-2	-2	-3	-4	-5	-4	-1	4	4	4	4

b. $-5 \leq x<-2, y=-2 ;-2 \leq x<1, y=-4-x ; 1 \leq x<4, y=(x-1)^{2}-5 ; 4 \leq x \leq 7, y=4$

2-156. The Lesson 2.2.5B Resource Page contains solutions.

2-157. See below.

a. See graphs below.

$$
f(x)=x^{2}
$$

$f(x)=(x+5)^{2}$

$$
f(x)=x^{2}+5
$$

$$
f(x)=x^{3}
$$

$$
f(x)=(x+5)^{3}
$$

$$
f(x)=x^{3}+5
$$

$$
f(x)=\frac{1}{x}
$$

$f(x)=-2.5 x$

b. One efficient method is to examine the tables for $f(-x)$ and $-f(x)$ for each function, and determine which are equivalent to the table for $f(x)$. Even: $f(x)=x^{2}, f(x)=(x+5)^{2}$; Odd: $f(x)=x^{3}, f(x)=\frac{1}{x}, f(x)=-$ 2.5x; Neither: $f(x)=x^{2}+5, f(x)=(x+5)^{3}, f(x)=x^{3}+5$.
c. Even functions have reflective symmetry across the y-axis, and odd functions have 180 -degree rotational symmetry about the origin.
d. Odd, because it has 180-degree rotational symmetry about the origin.

2-160. Answers vary. a will stretch or compress the graph vertically, and if a is negative the graph will be flipped vertically. h will move the graph horizontally. k will move the graph vertically. If x is negated, the graph will reflect across the y-axis.

2-162. $x<2, y=-(x-2)^{2} ; 2 \leq x, y=|x+2|$
2-164. $y=-2|x+3|+4$

2-165. See below:

a. $(x+2)^{2}+(y-3)^{2}=4$
b. $(x-12)^{2}+(y+15)^{2}=81$

2-166. $y=(x-2.5)^{2}+0.75$, vertex $(2.5,0.75)$
$\mathbf{2 - 1 6 7}$. He is incorrect. Justifications vary.
2-168. $f(x)=x^{2}+1$
2-169. $\pm 11, \pm 9, \pm 19$

