Lesson 2.2.5

2-153. See below:

- a. Overall $x \ge 0$, y = 40.00,45.45, 40.90, 41.35...First piece: $0 \le x \le 450$, y = 40Second piece: $450 < x \le 451$, y = 40.45Third piece: $451 < x \le 452$, = 40.90
- b. See solution to part (a).

2-154. Answers vary.

2-155. See below:

a. Solutions listed in bold in the table below.

x	-4	-3	-2	-1	0	1	2	3	4	5	6	7
F(x)	-2	-2	-2	-3	-4	-5	-4	-1	4	4	4	4

b. $-5 \le x < -2, y = -2; -2 \le x < 1, y = -4 - x; 1 \le x < 4, y = (x - 1)^2 - 5; 4 \le x \le 7, y = 4$

2-156. The Lesson 2.2.5B Resource Page contains solutions.

2-157. See below.

a. See graphs below.

- b. One efficient method is to examine the tables for f(-x) and -f(x) for each function, and determine which are equivalent to the table for f(x). Even: $f(x) = x^2$, $f(x) = (x + 5)^2$; Odd: $f(x) = x^3$, $f(x) = \frac{1}{x}$, f(x) = -2.5x; Neither: $f(x) = x^2 + 5$, $f(x) = (x + 5)^3$, $f(x) = x^3 + 5$.
- c. Even functions have reflective symmetry across the *y*-axis, and odd functions have 180-degree rotational symmetry about the origin.
- d. Odd, because it has 180-degree rotational symmetry about the origin.

2-160. Answers vary. *a* will stretch or compress the graph vertically, and if *a* is negative the graph will be flipped vertically. *h* will move the graph horizontally. *k* will move the graph vertically. If *x* is negated, the graph will reflect across the *y*-axis.

- **2-162.** $x < 2, y = -(x-2)^2; 2 \le x, y = |x+2|$
- **2-164.** y = -2|x+3|+4

2-165. See below:

- a. $(x+2)^2 + (y-3)^2 = 4$
- b. $(x 12)^2 + (y + 15)^2 = 81$
- **2-166.** $y = (x 2.5)^2 + 0.75$, vertex (2.5, 0.75)

2-167. He is incorrect. Justifications vary.

2-168. $f(x) = x^2 + 1$

2-169. ±11, ±9, ±19