Lesson 3.1.1

3-1. See below:

- a. The 100th figure has 10,506 tiles; expressions vary but are equivalent to (x + 2)(x + 3) or $(x + 2)^2 + (x + 1) + 1$.
- b. If you move the single tile from the upper left to fill in the space, then in (x + 2)(x + 3), (x + 2) represents the base and (x + 3) represents the height of the figure. In $(x + 2)^2 + (x + 1) + 1$, $(x + 2)^2$ represents the square in the middle, (x + 1) represents the bottom row, and 1 represents the tile in the upper left corner.
- c. Figure 6 has 72 tiles; different expressions make no difference.

3-2. See below:

- a. They are equivalent because evaluating for any particular value of x results in the same volume in either expression. Some students may input both expressions as functions on their graphing calculator and verify that the y values in both tables are the same for any x value.
- b. Methods vary, but typically students will multiply out Jill's expression to show that it is equivalent to Terrell's.
- c. They are all equivalent, but methods vary. For example, students may show that (20 2x)x = (10 x)2x or that (15 2x)(10 x)2x multiplies out to $4x^3 70x^2 + 300x$ using the Distributive, Commutative, and Associative Properties, or that the tables of all three functions have the same y value for any x value.

3-3. Possible responses listed below:

a.
$$x^2 + 6x + 5$$
, $x^2 + 3x + 3x + 9 - 4$, $(x + 5)(x + 1)$

b.
$$8a^6b^9$$
, $16a^6b^9$, $(2a^2b^3)(2a^2b^3)(2a^2b^3)$

d.
$$x + \frac{(x+1)(2x-1)}{x+2} - x$$
, $\frac{2x^2+x-1}{x+2}$, $\frac{5(x+1)(2x-1)}{5(x+2)}$

3-5. See below:

- a. $4x^2 12x + 14$
- b. $\frac{81y^4}{x^4}$

3-6. See below:

- a. 3
- b. 4
- c. 1
- d. 5
- e. 2

3-7. They are both correct: $\frac{x^{12}y^3}{64}$. Preferences vary.

3-8. See below:

- a. Horizontal line through (0, 3), domain: all real numbers, range: 3
- b. Vertical line through (-2, 0), domain: -2, range: all real numbers
- c. (-2, 3)
- **3-9.** m = 15, b = -3

3-10. See below:

- a. $(4, 8, 4\sqrt{3}), (5, 10, 5\sqrt{3})$
- b. The long leg is $\sqrt{3}n$ units long, and the hypotenuse is 2nunits long.

3-11. See below:

- a. 15, 21, 27, 33, t(n) = 6n 3
- b. 27, 81, 243, 729, $t(n) = 3^n$

c. Sequences and equations vary.

3-12. See below:

- a. $\frac{1}{5}$
- b. 3
- c. 27
- $d. \ \ \frac{1}{8}$