Lesson 3.1.3

3-37. See below:

a. Possibilites include $2 x^{2}+5 x-3$ and $10 x^{2}+25 x-15=0$.
b. Students should factor the equation from part (a), which, in the case of the possible answers given above, would result in $(2 x-1)(x+3)=0$ or $5(2 x-1)(x+3)=0$.
c. $x=0.5$ or $x=-3$

3-38. See below:

a. $x=-5$ or 4
b. $(2,-5)$
c. $x=-2$ or $\frac{1}{2}$
d. $x=-\frac{2}{3}$
e. $x=2$
f. $(-5,1)$ or $(20,1)$

3-39. See below:

a. Answers vary.
b. First version results in $\frac{\sqrt{U}}{2 y}=5$ and $3 \sqrt{U}-3 y=27$; Second version results in $\frac{\sqrt{U}}{2 y}=5$ and $3 U-3 y=$ 27; Students are likely to decide that the system resulting from the second version of U is simplier to solve.
c. $y=1, U=10$
d. Solve $\sqrt{x^{2}-15}=10$ for x. The solutions to the original system are $(20,1)$ and $(-5,1)$.

3-40. See below:

a. $U=m^{2}+5 m-24$
b. $U=y^{7}$
c. Substitution would not be useful.

3-41. See below:

a. $y=\frac{5}{2} x-4$
b. $y=\frac{2}{x}-3$

3-42. Students can isolate the x by factoring it out of the left side of the equation and then dividing by the factor that remains $x(y+3)=2, x=\frac{2}{y+3}$

3-43. All three equation can be compared by solving each for x or solving each for y. The first and third equations are different lines with different growth and intercepts, and different solutions. The second and third equations have the same solutions except for the point $(1,-2)$.

3-44. See below.

a. No, they are not equivalent, as the values in the table would be different and the graph of the second equation is a vertical stretch of the first.
b. Yes, the solutions to both are $x=3$ and $x=5$. If the first equation is multiplied by 2 , the result is the second.

3-45. See below:

a. $n=-2$
b. $x=-4,1$

3-46. See below:

a. equivalent
b. equivalent
c. equivalent
d. not equivalent
e. not equivalent
f. not equivalent

3-47. See below:

a. equal
b. equal
c. equal
d. equal if $a=0$ or $b=0$
e. equal if $x=1$
f. equal if $x=5$ and $y=2$

3-48. $10=15 m+b$ and $106=63 m+b ; m=2, b=-20, t(n)=2 n-20$
3-49. See below:
a. $t(n)=450000(1.03)^{n}$
b. They will make $\$ 154,762.37$ or 34.39% profit.

3-50. $5 x y(x+2)(x+5)$

3-51. See below:

a. They both have the solution $x=2$.
b. She divided both sides of the equation by 150 and used the Distributive Property.
c. Answers vary. One way to rewrite the equation is $t-2=5 . t=7$.

3-52. See below:

a. $-6,-14,-22,-30, t(n)=18-8 n$
b. $\frac{2}{5}, \frac{2}{25}, \frac{2}{125}, \frac{2}{625}, t(n)=50\left(\frac{1}{5}\right)^{n}$
c. Sequences and equations vary.

3-53. See below:

a. $5^{1 / 2}$
b. $9^{1 / 3}$ or $3^{2 / 3}$
c. $17^{x / 8}$
d. $7 x^{3 / 4}$

3-54. See below:

a. $x^{2}+y^{2}=36$
b. $(x-2)^{2}+(y+3)^{2}=36$
c. $(x-4)^{2}+(y+5)^{2}=36$

2-55. $\frac{741.8-25}{1800-0}=0.4^{\circ} \mathrm{F} / \mathrm{sec}$
2-56. See below:
a. See graph below.

b. Shift the graph up $\$ 11$.

