Lesson 3.2.2

3-52. f'(x) = 2x + 4

3-53. Yes: $x^0 = 1 = 1$, so $f'(x) = 0x^{-1} = 0$; students should also test functions such as $f(x) = x^{1/2}$ and $f(x) = x^{-3}$

3-54. $f'(x) = 6x^2 - 6x + 4$; y - 33 = 40(x - 3)

3-55. See below:

- a. $f(x) = x^2 1$
- b. a = 9
- c. f'(x) = 2x
- d. f'(9) = 18
- e. y 80 = 18(x 9)

3-56. See below:

- a. yes
- b. Impossible! Ana's method will only find the derivative at a point, not a derivative function.
- c. She does not have an "h" in her name, or her definition!

3-57. See below:

- a. The Power Rule only applies when there is a variable raised to an exponent.
- b. ≈ 1.390
- c. y = 1.390x 0.274

3-58. Graph A: velocity; Graph B: distance

3-59. See below:

- a. $\frac{dv}{dt}$
- b. $\frac{dV}{dr}$
- c. $\frac{dA}{dp}$

3-60. See below:

- a. $-9x^{-2}$
- b. $-21x^6 6$
- c. $-20t^{-5}$
- d. 1
- **3-61.** Answers vary, but the function must be odd with horizontal asymptotes at $y = \pm 4$.

3-62. See below:

- a. $f(x) = x^2 3$
- b. f'(x) = 2x
- c. 0, 2

3-63. See below:

- a. Answers vary.
- b. Zero velocity: the runner is momentarily stopped.
- c. Area A is the forward distance that the runner travels; area B is the distance that is run in the reverse direction.
- d. A + B is the total displacement of the runner; B is negative because the area is located under the horizontal axis and the distance traveled is in the reverse direction.
- **3-65.** Answers vary; Possible solution: $y = \frac{2x^3}{x(x+3)(x-5)}$

3-66. See below:

- a. DNE, but $y \rightarrow \infty$
- b. $\frac{1}{3}$

c.
$$\frac{1}{6}$$

d.
$$\frac{7}{3}$$

3-67. See below:

a.
$$\sin x \cos y + \cos x \sin y$$

b.
$$\cos x \cos y - \sin x \sin y$$

c.
$$\sin x \cos y - \cos x \sin y$$

d.
$$\cos x \cos y + \sin x \sin y$$