

3-96. For each graph below, answer the following two questions in complete sentences. Remember that some graphs meet change conditions as x increases.

- As x increases, f(x) increases or decreases?
- As x increases, the slopes of f(x) increase or decrease?

a.

b.

C.

đ.

e.

f.

- **3-97.** In each part below, sketch a smooth curve in which:
 - a. The entire curve has a positive, increasing slope.
 - b. The entire curve has a positive, decreasing slope.
 - c. The entire curve has a negative, increasing slope.
 - d. The entire curve has a negative, decreasing slope.

MATH NOTES

Curve Analysis

If y increases as x increases, then the function is **increasing.** Likewise, if y is decreasing as x is increasing, the function is **decreasing.** The function below is increasing when x > 0 and decreasing when x < 0. If a function is increasing or decreasing over its entire domain, the function is **monotonic.**

When the <u>slope</u> is increasing over an interval, the function is said to be **concave up** because it is curving upward, like in the curve $y = x^2$ below. However, when the slope is decreasing over an interval, the function is said to be**concave down,** such as with $y = -x^2$.

A point at which concavity changes is called a **point of inflection.** At this point, the curve changes from concave up to concave down or vice versa. A function can also have more than one point of inflection, as shown in the example at right.

3-98. Review the graphs from problem 3-96. Which of the curves are concave up, which are concave down, and which are sometimes concave up and sometimes concave down?

3-99. The graph at right is the slope function of f(x). Examine the graph carefully as you analyze the following questions.

d. Approximate the intervals of x at which f'(x) is increasing. What happens to f(x) at these x-values?

3-100. Describe the difference between stating, "f(x) is increasing" and "f'(x) is increasing." Which of the two statements indicates that f'(x) is positive

3-101. Draw f(x), given its slope statement.

The slope starts close to zero. When x = -5, the slope increases quickly. Then, at x = 0, the slope begins to decrease quickly until x = 5 when the slope is close to zero again. Help (Html5) \Leftrightarrow Help (Java)

3-102. Find f'(x) for each of the following functions. <u>Help (Html5)</u> \Leftrightarrow <u>Help (Java)</u>

a.
$$f(x) = \frac{2}{3}(x-5)^3 + x^2$$

b.
$$f(x) = \sqrt[3]{x}$$

c.
$$f(x) = \sin \frac{\pi}{4}$$

d.
$$f(x) = \frac{1}{(x+1)^2}$$

3-103. The graph at right records the distance a bicyclist travels from Oshkosh to a town 10 miles away. <u>Help (Html5)</u> ⇔ <u>Help (Java)</u>

- b. What was the bike's average velocity
- c. Approximate the bike's instantaneous velocity at t = 5 hours.

3-104. Define f(x) and g(x) so that h(x) = f(g(x)) for the following functions given that $f(x) \neq x$ and $g(x) \neq x$. Help (Html5) \Leftrightarrow Help (Java)

a.
$$h(x) = (2x - 5)^3$$

b.
$$h(x) = \sin(3x - 1)$$

c.
$$h(x) = \sqrt[5]{\tan x}$$

3-105. If $f'(x) = \cos x$, find two different possible expressions for f(x). How many solutions are possible? <u>Help (Html5)</u> \Leftrightarrow <u>Help (Java)</u>

3-106. Examine the Riemann sum below for the area under f(x). Help (Html5) \Leftrightarrow Help (Java)

$$\sum_{i=0}^{11} \frac{6-3}{12} f\left(3 + \frac{6-3}{12} \cdot i\right)$$

- a. How many rectangles were used?
- b. If the area being approximated is $A(f, a \le x \le b)$, what are a and b?

3-107. Oliver is trying to find the derivative of $f(x) = -4x^3$ at x = 2. He substituted and found that f(2) = -32. He then took the derivative and got f'(2) = 0. What went wrong? Why didn't this work? <u>Help (Html5)</u> \Leftrightarrow <u>Help (Java)</u>

3-108. For each graph below:

- i. Trace f(x) on your paper and write a slope statement for f(x). Help (Html5) \Leftrightarrow Help (Java)
- ii. Sketch the graph of f'(x) using a different color.

a.

b.

c.

3-109. Curves can be labeled with descriptors such as "concave down" and "increasing." On graph paper, graph them and label their respective parts. Use different colors to represent concavity. <u>Help (Html5)</u> ⇔ <u>Help (Java)</u>

a.
$$f(x) = 2x^2 + x - 15$$

b.
$$g(x) = x^3 - 12x - 1$$

3-110. Evaluate each limit. If the limit does not exist, say so but also state if y is approaching positive or negative infinity. Help (Html5) \Leftrightarrow Help (Java)

a.
$$\lim_{x \to 0} \frac{1 - \sqrt{x}}{x - 1}$$

b.
$$\lim_{x \to 1} \frac{1 - \sqrt{x}}{x - 1}$$

c.
$$\lim_{h \to 0} \frac{\sqrt{25+h}-5}{h}$$

d.
$$\lim_{h \to -2} \frac{(h+2)-2}{2}$$

e. Two of the problems above can be interpreted as the definition of the derivative at a point. Which are they?