Lesson 3.3.3

3-111. See below:

- d. Zeros on f' represent the maxima and minima of f.
- e. Zeros on f'' represent points of inflection on f and maxima and minima of f'.

3-112. See below:

- a. There are two zeros.
- b. Some students will look at slope---positive slope means local min, negative slope means local max (this is the 2nd derivative test). Others will look at how f' is changing: negative to positive means local max, positive to negative means local min. For the graph shown the max is x = A and the min is x = B.
- c. Kat is correct, if the zero does not represent a change in sign, then it is not a point of inflection. Also, a max or min on f'(x) represents a point of inflection on f.

- **3-113.** y'' = 6x + 3, so at x = 0, y'' = 3. Since y'' > 0, then y is concave up.
- **3-114.** One possible solution:

3-116. See below:

- a. ≈ 2.417
- b. ≈ 3.347
- **3-117.** See sample graph below.

3-118. E

3-119. See below:

- a. They will both compute the derivative of f(x) = (x + 1)(x + 2). Part (i) uses Hana's method to find f'(x) while part (ii) uses Hanah's method.
- b. f'(x) = 2x + 3
- **3-120.** 11; These are both definitions of the derivative of f(x) = (x + 1)(x + 2) from the previous problems. Part (a) uses Hana's method to find f'(4) and part (b) uses Ana's method to find f'(4).
- **3-121.** \approx 339 mph; \approx 0.0942 miles
- **3-122.** x = -1, 6

3-123. See below:

- a. $\frac{1}{5}$
- b. $-\frac{1}{4}$
- c. $\frac{12}{13}$
- d. DNE but $y = -\infty$