Lesson 3.4.2

3-156. Typical response: If f(c) does not exist, there is no point of tangency for the tangent. If both sides of the limit of f(x) as $x \to c$ do not agree, then there cannot be a tangent at f(c).

3-157. See below:

a. Solution:
$$f(x) = \begin{cases} 2 + (x+0.1)^2 & \text{for } x < 0 \\ 2 + (x-0.1)^2 & \text{for } x \ge 0 \end{cases}$$

b. No; there is a cusp at f(0).

c. Solution:
$$f'(x) = \begin{cases} 2(x+0.1) & \text{for } x < 0 \\ 2(x-0.1) & \text{for } x > 0 \end{cases}$$

d. no

3-158.
$$f'(x) = 8x, 88, 8000$$

3-159. See below:

- b. left limit $\rightarrow -1$, right limit $\rightarrow 1$. Since they do not agree, y' does not exist at x = 0.
- c. Most calculators will incorrectly provide a slope of 0 at the vertex.
- d. Due to symmetry, the difference quotient will always result in zero for this function when x = 0. Therefore, since the limit as is 0, the calculator will falsely state that f'(0) = 0.

3-160. See below:

- a. There are 16 combinations.
- b. 10 solutions:
- c. 8 solutions:

3-161. y = -4x; Point of intersection: $\left(\frac{4}{3}, -\frac{16}{3}\right)$

3-163. ≈ 9.697

3-165. See below:

- a. $-\frac{2}{3}x^{-5/3}$
- b. $\frac{3}{2}\sqrt{x}$
- c. 0
- d. $-\frac{2}{x^2}$

3-166. See below:

- a. $F(x) = 2x^{3/2} \frac{7}{2}x^2 + C$
- b. $F(x) = \sin x 2 \cos x + C$

3-167. See below:

- a. g(x) = 3x 11, $f(x) = \cos x$
- b. $g(x) = 2^x 1$, $f(x) = \sqrt[3]{x}$
- c. g(x) = 5 2x, $f(x) = 3^x$

3-168. See below:

- a. $-\frac{1}{2\sqrt{3}}$
- b. $-\frac{5}{2}$
- c. 4
- d. 1

3-169. f'(x) = 2