Lesson 4.1.1

4-1. See below:

- a. There are infinite coordinate pairs that make the equation true. The parabola is a "picture" of all these possible coordinate pairs.
- b. x = 0 or x = -6; Possible responses: look for points (x, 4), look along the line y = 4, trace the graph to points where y = 4.

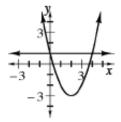
4-3. See below:

- a. Rewriting, because he rewrote the equation to get rid of the fractions.
- b. Undoing, because the opposite of addition is subtraction.
- c. Looking inside, because he reasoned about the value of the expression in the parentheses.
- d. There are infinite coordinate pairs that are solutions to the equation. To check the one solution, look on the line where the *x*-coordinate is 7 and check if the *y*-coordinate is approximately $\frac{9}{10}$.
- e. Verify that the point x = 7, $y = \frac{9}{10} = 0.9$ is on the table.
- f. Possible solution: Rewrite as $\frac{x-5}{4} = \frac{1}{2}$. Then rewrite as x 5 = 2 and undo for x = 7.
- 4-4. Possible responses listed below.
 - a. x = 0 or $x = \frac{1}{2}$
 - b. x = 3
 - c. no solution
 - d. $y = \frac{3}{2}$ or y = -4
 - e. $x = \pm 2$
 - f. no solution
 - g. $w = \frac{1}{3}$

h. x = -7 or x = -1

4-5. Parts (a), (b), (c), (f), and (h) can easily be checked by graphing the similar y = function. For example, for part (a), by graphing y = 4abs(8x - 2) students can see if the coordinates (0, 8) and ($\frac{1}{2}$, 8) are on the graph and in the table.

4-7. See graph below. x = 0 and x = 4



4-8. See below:

- a. x = 5 or x = -3
- b. *m* = 35
- c. no solution

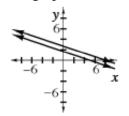
d. x = 7

4-9. *y* = 2

- a. y = 0
- b. x = 0

4-10. See below:

- a. Combining the equations leads to an impossible result, so there is no solution.
- b. See graph below.



c. There can be no intersection because the lines are parallel. When assuming there is an intersection,

students will find that their work results in a false statement.

4-11. This is a scalene triangle, because the sides have lengths $\sqrt{29}$, $\sqrt{17}$, and $\sqrt{20}$.

4-12. See below:

- a. 63
- b. 0
- c. $n^3 1$
- d. Neither; both the differences and ratios between the terms vary.

4-13. See below:

- a. $\frac{(x-2)(x+6)}{(x+4)(2x+3)}$
- b. $\frac{2x+1}{x-5}$
- c. $\frac{9m+27}{m+3} = 9$
- d. $\frac{n+3}{n-1}$

4-14. See below:

- a. 0-2 times
- b. 0-4 times
- c. 0-4 times
- d. 1-3 times if you consider parabolas that open up or down 1-4 times if you consider rotated parabolas