Lesson 4.1.1

4-1. See below:

- b. Take a limit of the slope of the secants as the two point converge. Emphasize that without the limit, we could not find a slope at a single point.
- c. Again, take the limit of the sum of the areas of the rectangles as the width of each rectangle goes to zero.

4-2. See below:

- a. Take the limit of the sum of areas as the number of rectangles $\rightarrow \infty$.
- b. Gets smaller, approaching 0.

4-3. See below:

- a. Students should write an expression of the form: $\lim_{n \to \infty} \sum_{i=0}^{n-1} \left(\frac{b-a}{n} \right) \cdot f(a + \frac{b-a}{n} \cdot i)$
- b. No; The limit predicts a sum as n approaches infinity but n cannot equal infinity.
- c. Each gets smaller, approaching 0.
- d. Answers vary.

4-4. See below:

- a. The starting and ending points for the area region.
- b. It became dx, which can be thought of as an infinitely thin width.
- c. f(x) represents the heights of all rectangles and dx represents the bases.

4-5. See below:

- a. 0; The regions above and below the *x*-axis are equal.
- b. 16.25; The region is a trapezoid.
- c. 24; The region is a rectangle.
- d. 0, The region has a width of 0.

4-6. See below:

- a. 17.5
- b. 160
- c. 6.875
- d. $7.5t^2 + 10t$

4-7. See below:

- a. even
- b. $2 \cdot 10 = 20$
- c. -2 10 = -12
- d. $\int_0^3 f(x) dx \frac{1}{2} \int_{-2}^2 f(x) dx = \int_2^3 f(x) dx$

4-8. See below:

- a. $\frac{-4}{5}x^{-3} 4$
- b. $-x^{-1/2}$
- c. -6 sin x
- d. 0

4-9. See below:

a.
$$\sum_{i=0}^{15} \left[f(-8+i)^{1/3} + 1 \right] = 12$$

b.
$$\sum_{i=0}^{63} \left[\frac{1}{4} \cdot \left(f(-8 + \frac{1}{4} \cdot i)^{1/3} + 1 \right) \right] = 15.5$$

4-10.
$$f'(x) = 2x + 1$$
, $y = 7(x - 3)$

4-11. Answers should lie near 46.5; using more rectangles is more accurate. $\sum_{i=0}^{n-1} \frac{3}{n} \left(3 \left(\frac{3i}{n} + 2 \right) + 5 \right)$

4-12. No, the further the region is from the "pole," the more volume it sweeps; Vol $A = 16\pi \text{ un}^3$, Vol $C = 12\pi \text{ un}^3$, Vol $(B + C) = 52\pi \text{ un}^3$