Lesson 4.1.3

4-36. See below:

a. No solution, these are parallel lines
b. $(2,3)$, line is tangent to parabola
c. There are two intersection points, $(4,2)$ and $(1,-1)$
d. Infinite solutions, they are the same line.

4-37. See below:

a. At this point, students may expect two solutions. However, in part (b) they will discover that there are actually four solutions.
b. There are four solutions: $(4,3),(-4,3),(-3,-4)$, and $(3,-4)$.
c. Answers vary; expected response: $x^{2}+\left(x^{2}-13\right)^{2}=25$ and $y^{2}+y-12=0$; the equation in terms of y is easier to solve.
d. When $y=3, x= \pm 4$. When $y=-4, x= \pm 3$.

4-38. See below:

a. Some strategies include flipping the parabola upside-down, decreasing the radius of the circle, translating the parabola up above the circle, and widening the parabola to miss the circle.
b. Answers vary.

4-40. See below:

a. $(-2,-11)$, The lines intersect at one point
b. infinite solutions, The equations are equivalent
c. $(2,45)$ and (-1.3), The line and parabola intersect twice
d. $(3,6)$, The line is tangent to the parabola

4-41. See below:

a. $y=3$ or $y=-5$
b. $x=-\frac{99}{4}$
c. $y=1$
d. $x=-13$

4-42. See below:

a. $\mathrm{E} t(n)=-2+3 n ; \mathrm{R} t(0)=-2, t(n+1)=t(n)+3$
b. $\mathrm{E} t(n)=6\left(\frac{1}{2}\right)^{n} ; \mathrm{R} t(0)=6, t(n+1)=\frac{1}{2} t(n)$
c. $t(n)=10-7 n$
d. $t(n)=5(1.2)^{n}$
e. $t(4)=1620$

4-43. 19.79 feet

4-44. See below:

a. $m=-\frac{6}{5}, b=(0,-7)$
b. $m=\frac{3}{2}, b=(0,-5)$
c. $m=2, b=(0,-12)$

4-45. See below:

a. not function D: $-3 \leq x \leq 3 \mathrm{R}:-3 \leq y \leq 3$
b. a function $\mathrm{D}:-2 \leq x \leq 3 \mathrm{R}:-2 \leq x \leq 2$

4-46. $(-7,11)$

