Lesson 4.1.4

4-47. The path of Jamal's cupcake can be described by $y = -\frac{9}{100}(x-10)^2 + 9$. The path of Dinah's sandwich can be described by $y = -\frac{1}{24}(x-12)^2 + 6$. Depending on how students place the axes, other possibilities might be $y = -\frac{9}{100}x^2 + 9$ and

 $y = -\frac{1}{24}(x-2)^2 + 6$ or $y = -\frac{9}{100}(x+10)^2 + 9$ and $y = -\frac{1}{24}(x+12)^2 + 6$. The point of intersection is approximately (16.55, 5.14), so he is about 5.14 feet tall, or 5 feet, 1.7 inches.

4-48. Let a represent chocolate truffles and b represent caramel turtles; 4.25 = 5a + 2b and 3.50 = 2a + 8b; a = \$0.75 and b = \$0.25.

4-49. See below:

- a. For the first 6 years, Job A offers a higher salary. Starting with the 7th year, Job B offers a higher salary.
- b. If Job B is changed to start at a salary that is more than \$52,000, it will always be higher than the salary at Job A. However, regardless of the rate of increase of Job A, the exponential growth of Job B will always surpass it, so Job A cannot be changed to always be the better choice. Some students could argue though, that if the rate of growth of Job B is changed to a very low value, such as 1%, then Job A will remain higher for more years than most people would stay at one job.

- **4-51.** 4c + 5p = 32, c + 8p = 35, cylinders weigh 3 oz. and prisms weigh 4 oz.
- **4-52.** Yes. No. Any value of x such that $-3 \le x \le 2$ is a solution.

4-53. See below:

a.
$$x = 4$$

b.
$$x = 6$$

c.
$$x = 6$$

d.
$$x = \frac{3}{2}$$

4-54. See below:

- a. (4, –6)
- b. (4, –6)
- c. $(\frac{3}{2}, -\frac{9}{4})$

4-55. See graphs below:

a.

b.

4-56. B

4-57. See below:

a. See graph below.

b.
$$x \approx 0.71$$