4.4.2 How do I find the area between 3 curves?

More Area Between Curves

4-131. Find the area of the enclosed regions below. Review problem 4-117 for a description of a complete solution.

- a. The area between $y = -2(x^2 1)$ and $y = -x^2 + 1$.
- b. The area between $y = \sin x$ and $y = \frac{3}{4}x 7$ for $\pi \le x \le 2\pi$.
- 4-132. What would the result be if we calculated

$$\int_{a}^{b} (g(x) - f(x))dx \text{ instead of } \int_{a}^{b} (f(x) - g(x))dx \text{ for the functions } f(x) \text{ and } g(x) \text{ shown at right? Explain your thinking.}$$

4-133.Examine the area of the region formed by the equations $y=x^2$, $y=\sqrt{x}$, and y=-x+6 shown at right.

- a. Explain why you cannot use one integral to find the area of the entire region.
- b. Write an expression using two integrals that would find the total area of the region using typical rectangles that are vertical. Then, evaluate the integrals and find the area.

4-134. Examine the region formed by the equations f(x)

$$= x - 1$$
 and $g(x) = x^3 - 2x^2 + 1$, shown at right.

- a. Explain why this region requires two integrals.
- b. Write and evaluate an integral expression to find the area between the curves. Check your answer with your graphing calculator.

4-135. Examine the integrals below. Consider the multiple tools available for evaluating integrals and use the best strategy for each. After evaluating the integral, write a short description of your method.

Homework Help 🔨

a.
$$\int_0^5 (|x-2|+3) dx$$

b.
$$\int \left(\frac{4}{m^3} - 3\cos m\right) dm$$

c.
$$\int_{1}^{2} x^{x} dx$$

d.
$$\int \pi^2 dx$$

e.
$$\int \sqrt{1-x^4} \, dx$$

4-136. Draw a flag that would generate the same volume no matter if it were rotated about the x- or y-axis. Is there more than one possible shape of flag that meets this requirement? Does your flag have any special property that ensures these equal volumes of rotation? Homework Help \S .

4-137. Without your calculator, evaluate the following limits. Homework Help **\(\)**

a.
$$\lim_{x \to 3^+} \sqrt{x-3}$$

b.
$$\lim_{x \to \infty} \frac{x^2 - 2x + 1}{x^3}$$

c.
$$\lim_{x \to \pi} \frac{\cos x + 1}{x - \pi}$$

4-138. Use your calculator to approximate the following limits to two decimal places. Homework Help

a.
$$\lim_{x \to 1} \frac{2^x - 2}{3^x - 3}$$

b.
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

4-139. For $f(x) = \sin(x^2)$, $g(x) = \sqrt{x-2}$, and $h(x) = \frac{1}{x}$, find the following functions and their domains. Homework Help §

a.
$$f(g(x))$$

b.
$$f(g(h(x)))$$

c.
$$h(f(g(x)))$$

d.
$$h(h(x))$$

4-140. Find the equation of the line that is: Homework Help **\(\)**

a. Tangent to the function
$$y = \frac{3x^2 - 12}{x + 2}$$
 at $x = 1$.

b. Normal to the tangent line at x = 1.

4-141. The annual cycle of daily high temperatures in Cabanaville is shown in the graph below from January 1st to December 31st. The *x*-axis is marked in segments of 30 days and the *y*-axis represents temperature in °F. Homework Help \S .

- a. Approximately when is Cabanaville at its hottest? The coldest? How can you tell?
- b. When is the temperature changing the fastest? What is this called?
- **4-142.** Find a such that f(x) is differentiable at x = 1. Homework Help $^{\bullet}$

$$f(x) = \begin{cases} (x+2)^2 - 3 & \text{for } x < 1\\ a\sin(x-1) + 6 & \text{for } x \ge 1 \end{cases}$$

4-143. The graph of f'(x) is shown below. Find the intervals where f(x) is increasing, decreasing, concave up, and concave down. Homework Help $\stackrel{\bullet}{\searrow}$

4-144. If n is a positive integer, write a definite integral to represent. Homework Help $^{\bullet}$

$$\lim_{n\to\infty} \frac{2}{n} \left[\left(1 + \frac{2}{n}\right)^2 + \left(1 + \frac{4}{n}\right)^2 + \dots + \left(1 + \frac{2n}{n}\right)^2 \right]$$