Lesson 5.1.1

5-1. –11, divide –70 by 10, subtract 4.

5-2. See below:

a. It multiplies the input by two and then adds 1.

x	f(x)
3	7
4	9
-3	-5

- b. 3, 9 would yield a 4, and -5 would yield a -3. It is giving the input for each original output.
- c. It subtracts one and then divides by two.

x	f(x)
7	3
9	4
-5	-3

d. Original: f(x) = 2x + 1; backwards $f^{-1}(x) = \frac{x-1}{2}$; the backwards function is the same operations in opposite order as the original function.

5-3. See below:

- a. 22
- b. It must subtract 2 and divide by 5.
- c. Subtract 2 and then divide by 5; $h^{-1}(x) = \frac{x-2}{5}$
- d. Sample answer: h(4) = 22 and $h^{-1}(22) = 4$

5-4. See below:

a.
$$g(x) = 6(\frac{x+5}{2})^3$$
, 384

- b. divide by 6 take cube root multiply by 2 subtract 5. $g^{-1}(x) = 2 \cdot \sqrt[3]{\frac{x}{6}} 5$
- c. $g^{-1}(384) = 3$ as expected.

5-5. See below:

a.
$$f^{-1}(x) = \frac{x+6}{3}$$

b.
$$g^{-1}(x) = \sqrt[3]{x+5}$$

c.
$$p^{-1}(x) = \sqrt[3]{\frac{x}{2}} - 3$$

d.
$$t^{-1}(x) = \frac{3x}{10} + 4$$

5-6. Answers will vary, but students should notice that the graphs are the same shape but have different orientation. The tables have x and y values switched. Students may notice a line of symmetry, but they are not likely to name it y = x.

5-8. See below:

a.
$$y = 2(x + 3)$$

b. Yes, y = x. See graph below.

5-9. See below:

- a. 9
- b. 4
- c. $x \approx 1.89$

5-10.
$$x = \sin^{-1}(0.75) \approx 48.59^{\circ}$$
; to check: $\sin(48.59^{\circ}) \approx 0.75$

5-11. *x* must equal *y*.

5-12. See below:

a.
$$x = \frac{12}{5}$$

b.
$$x = \frac{5}{2}$$

c.
$$x = 8$$

d.
$$x = \frac{80}{3}$$

5-13. The area between an upward parabola with vertex (0, -5) and the downward parabola with vertex (1, 7). See graph below.

5-14. See below:

a. See graph below.

- b. See graph above.
- c. Possible equation: y = 10x 5
- d. For this equation, approximately \$495