Lesson 5.1.2

5-16. See below:

a. See graphs with inverses in problem 5-17.

b. Sample answer: The x- and y-values switch in a table for a function and the table for its inverse.

5-17. See below:

a. See graphs below.

6 X

b. y = x

c. Answers vary. Sample: This equation makes sense because the x- and y-values switch between a function and its inverse.

5-18. See below:

a. See graph below.

b. See graph above.

c. Students make a copy of their parabola.

d. See graph below.

5-20.
$$x = \left(\frac{y}{2}\right)^2$$
 or $y = \pm 2\sqrt{x}$

5-21. See below:

- a. The inverse is not a function. For a given input value there is more than one output. For example if x = 1, y could be either 2 or -2.
- b. The inverse is a function.
- c. $y = 2\sqrt{x}$. The equation now includes only the positive square root.

5-22. See below:

- a. Teams could choose either $x \ge 3$ or $x \le 3$.
- b. See sample graph below.

- c. Depending on the choice in part (a), the inverse is $y = \sqrt{x} + 3$ or $y = -\sqrt{x} + 3$.
- **5-23.** If the graph has more than one x-value that corresponds to each y-value, the inverse will *not* be a function. Examples include $y = x^3 x$.

5-24. See below:

a. $y = \frac{x}{5} + 2$

b. $y = \frac{2}{x-1}$

5-25. It does not matter which graph is labeled as the function or inverse because the graph shows the graphical relationship between a function and its inverse, the graphs are inverses of each other.

5-26. See graph below.

5-27. See below:

a.
$$y = \frac{1}{3}(x+8)$$

b.
$$y = 2(x - 6)$$

c.
$$y = 2x - 6$$

5-28.
$$x \approx 0.53$$

5-29. See below:

a.
$$x^2 - 5x - 14$$

b.
$$6m^2 + 11m - 7$$

c.
$$x^2 - 6x + 9$$

d.
$$4y^2 - 9$$

5-30. $(x+3)^2 + (y-5)^2 = 9$. See graph below.

5-31. See below:

a.
$$\frac{x-3}{x(x-4)}$$

b.
$$\frac{4}{x-2}$$

d.
$$\frac{x-1}{x+1}$$

5-32. See below:

a.
$$f(x) \approx 1.5(1.048)^x$$

5-33. See graph below. For f(x), domain: $-2 \le x \le 5$, range: $-3 \le y \le 3$; For $f^{-1}(x)$, domain: $-3 \le x \le 3$, range: $-2 \le y \le 5$

5-34. See below:

a.
$$L(x) = x^2 - 1$$
, $R(x) = 3(x + 2)$

c. Order does matter – show by substituting numbers; output is 224 if x = 3 for L(R(x)).

5-35. See below:

- a. The system has no solution.
- b. The graphs do not intersect, they are parallel lines.
- **5-36.** If she adds nothing else to the account and it just sits there making interest, she will have \$440.13 on her eighteenth birthday.

5-37. See below:

a.
$$x^2 - 10x - 56$$

b.
$$4m^2 + 8m - 5$$

c.
$$x^2 - 81$$

d.
$$9y^2 + 12y + 4$$

5-38. See below:

5-39.
$$x = 2.5$$