Lesson 5.1.2

5-16. See below:

a. See graphs with inverses in problem 5-17.
b. Sample answer: The x - and y-values switch in a table for a function and the table for its inverse.

5-17. See below:

a. See graphs below.
a.

b.

c.

b. $y=x$
c. Answers vary. Sample: This equation makes sense because the x - and y-values switch between a function and its inverse.

5-18. See below:

a. See graph below.

b. See graph above.
c. Students make a copy of their parabola.
d. See graph below.

5-20. $x=\left(\frac{y}{2}\right)^{2}$ or $y= \pm 2 \sqrt{x}$

5-21. See below:

a. The inverse is not a function. For a given input value there is more than one output. For example if $x=$ $1, y$ could be either 2 or -2 .
b. The inverse is a function.
c. $y=2 \sqrt{x}$. The equation now includes only the positive square root.

5-22. See below:

a. Teams could choose either $x \geq 3$ or $x \leq 3$.
b. See sample graph below.

c. Depending on the choice in part (a), the inverse is $y=\sqrt{x}+3$ or $y=-\sqrt{x}+3$.

5-23. If the graph has more than one x-value that corresponds to each y-value, the inverse will not be a function. Examples include $y=x^{3}-x$.

5-24. See below:

a. $y=\frac{x}{5}+2$

b. $y=\frac{2}{x-1}$

5-25. It does not matter which graph is labeled as the function or inverse because the graph shows the graphical relationship between a function and its inverse, the graphs are inverses of each other.

5-26. See graph below.

5-27. See below:

a. $y=\frac{1}{3}(x+8)$
b. $y=2(x-6)$
c. $y=2 x-6$

5-28. $x \approx 0.53$

5-29. See below:

a. $x^{2}-5 x-14$
b. $6 m^{2}+11 m-7$
c. $x^{2}-6 x+9$
d. $4 y^{2}-9$

5-30. $(x+3)^{2}+(y-5)^{2}=9$. See graph below.

5-31. See below:

a. $\frac{x-3}{x(x-4)}$
b. $\frac{4}{x-2}$
c. 2
d. $\frac{x-1}{x+1}$

5-32. See below:

a. $f(x) \approx 1.5(1.048)^{x}$
b. $\sim \$ 425.04$

5-33. See graph below. For $f(x)$, domain: $-2 \leq x \leq 5$, range: $-3 \leq y \leq 3$; For $f^{-1}(x)$, domain: $-3 \leq x \leq 3$, range: $-2 \leq y \leq 5$

5-34. See below:

a. $L(x)=x^{2}-1, R(x)=3(x+2)$
b. 30
c. Order does matter - show by substituting numbers; output is 224 if $x=3$ for $L(R(x))$.

5-35. See below:

a. The system has no solution.
b. The graphs do not intersect, they are parallel lines.

5-36. If she adds nothing else to the account and it just sits there making interest, she will have $\$ 440.13$ on her eighteenth birthday.

5-37. See below:

a. $x^{2}-10 x-56$
b. $4 m^{2}+8 m-5$
c. $x^{2}-81$
d. $9 y^{2}+12 y+4$

5-38. See below:

a. $(2,0),(-1,0)$
b. $(-5,0),(-3,0)$

5-39. $x=2.5$

