Lesson 5.1.3

5-40. See below:

a. $y=6 x-11$
b. Same table as given, but with columns switched.
c. The x and y values are reversed.
d. switch x and y to get $x=6 y-11$
e. $y=\frac{x+11}{6} y=\frac{x+11}{6}$
f. justifications vary

5-41. See below:

a. $y=\sqrt[3]{\frac{x}{2}}+1$
b. $y=(x-3)^{2}+2$ with the restricted domain $x \geq 3$
c. $y=2\left(\frac{x-20}{3}\right)+9$
d. $y=\sqrt[3]{\frac{3(x-6)}{4}}+1$

5-42. See below:

a. She should reverse the order of the machines and check in that direction as well.
b. Answers vary based on equations selected.
c. Yes, reasons vary.
d. No. $g(3)$ cannot be the input for $f(x)$ unless she reverses the order.
e. It will work for any input.

5-43. See below:

a. Answers vary. Sample: expect to get out the original input value.
b. Answers vary. Sample: expect to get out the original input value.
c. Answers vary. Sample: expect to get out the original input value.
d. Yes.

5-44. Trejo is correct; justifications vary.

5-45. See below:

a. yes, for any $x: f(g(x))=x, g(f(x))=x$
b. yes, for any $x: f(g(x))=x, g(f(x))=x$
c. no, $e(d(x))=4 x$ and $d(e(x))=2 x-10 . e^{-1}(x)=2 \sqrt{x}+10$ and $d^{-1}(x)=\left(\frac{x-10}{4}\right)^{2}$.

5-46. Rebecca is correct. All the x and y parts are interchanged. The inverse of the graph below has an asymptote at the x-axis, domain of $x>0$, and range of all real numbers.

5-48. See below:

a. 121
b. 17

5-49. See below:

a. $2 x^{3}+2 x^{2}-3 x-3$
b. $x^{3}-x^{2}+x+3$
c. $2 x^{2}+12 x+18$
d. $4 x^{3}-8 x^{2}-3 x+9$

5-50. See below:

a. $x=-\frac{10}{7}$
b. $x=\frac{1}{3}$ or $x=1$
c. $x=115$
d. $x=0$ or $x=4$

5-51. See below:

a. $y= \pm \sqrt{x-3}$
b. $y=4(\sqrt[3]{x}-6)$
c. $y=\frac{x^{2}+6}{5}$

5-52. $(x-2)^{2}+y^{2}=20$; circle, $x^{2}+y^{2}=r^{2}$, center $(2,0)$ and radius ≈ 4.5; See graph below.

5-53. 70

5-54. See below:

a. 3
b. $y-4$
c. $\frac{1}{3 x}$
d. $\frac{x}{x-2}$

