Lesson 5.1.3

5-40. See below:

- a. y = 6x 11
- b. Same table as given, but with columns switched.
- c. The x and y values are reversed.
- d. switch x and y to get x = 6y 11
- e. $y = \frac{x+11}{6} y = \frac{x+11}{6}$
- f. justifications vary

5-41. See below:

a.
$$y = \sqrt[3]{\frac{x}{2}} + 1$$

- b. $y = (x 3)^2 + 2$ with the restricted domain $x \ge 3$
- c. $y = 2(\frac{x-20}{3}) + 9$
- d. $y = \sqrt[3]{\frac{3(x-6)}{4}} + 1$

5-42. See below:

- a. She should reverse the order of the machines and check in that direction as well.
- b. Answers vary based on equations selected.
- c. Yes, reasons vary.
- d. No. g(3) cannot be the input for f(x) unless she reverses the order.
- e. It will work for any input.

5-43. See below:

a. Answers vary. Sample: expect to get out the original input value.

- b. Answers vary. Sample: expect to get out the original input value.
- c. Answers vary. Sample: expect to get out the original input value.
- d. Yes.
- **5-44.** Trejo is correct; justifications vary.

5-45. See below:

- a. yes, for any x: f(g(x)) = x, g(f(x)) = x
- b. yes, for any x: f(g(x)) = x, g(f(x)) = x
- c. no, e(d(x)) = 4x and d(e(x)) = 2x 10. $e^{-1}(x) = 2\sqrt{x} + 10$ and $d^{-1}(x) = (\frac{x-10}{4})^2$.
- **5-46.** Rebecca is correct. All the x and y parts are interchanged. The inverse of the graph below has an asymptote at the x-axis, domain of x > 0, and range of all real numbers.

5-48. See below:

- a. 121
- b. 17

5-49. See below:

a.
$$2x^3 + 2x^2 - 3x - 3$$

b.
$$x^3 - x^2 + x + 3$$

c.
$$2x^2 + 12x + 18$$

d.
$$4x^3 - 8x^2 - 3x + 9$$

5-50. See below:

a.
$$x = -\frac{10}{7}$$

b.
$$x = \frac{1}{3}$$
 or $x = 1$

c.
$$x = 115$$

d.
$$x = 0$$
 or $x = 4$

5-51. See below:

a.
$$y = \pm \sqrt{x-3}$$

b.
$$y = 4(\sqrt[3]{x} - 6)$$

c.
$$y = \frac{x^2 + 6}{5}$$

5-52. $(x-2)^2 + y^2 = 20$; circle, $x^2 + y^2 = r^2$, center (2, 0) and radius ≈ 4.5 ; See graph below.

5-53. 70

5-54. See below:

- a. 3
- b. y 4
- c. $\frac{1}{3x}$
- d. $\frac{x}{x-2}$