Lesson 5.2.1

5-55. See below:

a. (i) $y = \pm \sqrt{x}$, (ii): $y = \sqrt[3]{x}$, (iii): y = x, (iv): there is no inverse equation, (v): $y = x^2$ for $x \ge 0$, (vi): $y = \pm \sqrt{x^2 + 1}$

- b. There are three: y = x, $y = \frac{1}{x}$ and $x^2 + y = 1$. This can be seen in the graphs but justified by switching x and y and rewriting
- c. There are three: $y = x^2$, y = |x| and $x^2 + y^2 = 1$

5-56. See below:

a. See sample table below.

b. See graph below.

- c. $x = 3^y$ or y = the exponent of 3 to get x.
- d. 4. It's the exponent you have to use with 3 to get 81.

5-57. See below:

- a. 4
- b. 5
- c. 10
- d. 125
- e. 3
- f. 0.5

5-58.
$$y = \log_3 x$$

5-59. See below:

a. x = 2|y+1|; see graph below

b. Answers vary.

5-60. Domain: x > 0; Range: $-\infty < y < \infty$; x-intercept: (1, 0); no y-intercept; asymptote at x = 0.

5-61. See below:

- a. undefined
- b. $x \neq 7$
- c. g(x) = 11
- d. $f(g(x)) = -\frac{1}{2}$

5-62. See below:

a.
$$e(x) = (x-1)^2 -5$$

b. One machine undoes the other so e(f(-4)) = -4

c. They would be reflections of each other across the line y = x.

d. See graph below.

5-63. See graph below.

a. Domain: all real numbers, range y > -3

b. No

c. (0, -2), (1.585, 0)

d. Sample: $y + a = 2^x$ where $a \le 0$

5-64. See below:

a.
$$x = 36.78$$

b.
$$x = 31.43$$

5-65. See below:

a.
$$B = 0.07(0.3x)$$
 or $B = 0.021x$

b.
$$S = 0.09(0.7)x$$
 or $S = 0.063x$

c.
$$0.084x = 5000$$
; \$59,523.81

5-66. See below:

a.
$$(x+7)(x-7)$$

b.
$$6x(x + 8)$$

c. (x-9)(x+8)

d. 2x(x+2)(x-2)

5-67. The region between the two parabolas, see graph below.

