Lesson 5.2.2

5-68. See entries in the table below.

			_											0.2	_
g(x)	3	5	-1	0	4	2	~1.6	6	1	n/a	-2	n/a	$\frac{1}{2}$	~ -23	-3

- a. $x = 2^y$ or y = the exponent needed to get x when the base is 2.
- b. Sample answer: $g(x) = \log_2 x$
- c. Neither 0 nor -1 can be expressed as a power of 2.
- d. y = 4.64

5-69. See below:

a. See answers in table below.

														0.2	
g(x)	3	5	-1	0	4	2	~1.6	6	1	n/a	-2	n/a	$\frac{1}{2}$	~ -23	-3

- b. See answers in table above.
- c. g(x) increases slowly.
- d. It is a reflection across y = x. See graph below.

5-70. See below:

a.
$$5; 2^5 = 32$$

b.
$$-1$$
; $2^{-1} = \frac{1}{2}$

- c. $2; 2^2 = 4$
- d. not possible; 2^x cannot = 0
- e. $8; 2^3 = 8$
- f. $\sqrt{2}$; $2^{1/2} = \sqrt{2}$
- g. -4; $2^{-4} = \frac{1}{16}$
- h. 1; $2^0 = 1$

5-71. See below:

- a. $y = 9^x$
- b. $y = \log_{10} x$
- c. y = 6x 1
- d. $y = \frac{1}{2} \log_5 x$

5-72. See below:

- a. 2
- b. 4
- c. 7
- d. 1.2
- e. w + 3

5-73. $x = 2^y$, no, yes, yes; They have the same graph or give the same table of (x, y) values, or one is just a rewritten equation of the other.

5-74. See below:

a. $x = \log_5(y)$

b.
$$x = 7^y$$

c.
$$x = \log_8(y)$$

d.
$$K = log_A(C)$$

e.
$$C = A^K$$

f.
$$K = (\frac{1}{2})^N$$

5-75. See below:

c. Smaller size. Note: Sketching a graph of rate with respect to bag size like the one below may help here.

5-76. Possible answers listed below:

- a. Factor and use the Zero Product Property (rewrite), (-8, 0) and (1, 0)
- b. Take the square root (undo)
- c. Quadratic Formula
- d. Complete the square (rewrite)

5-77.
$$x = -4$$

5-78. See below:

a.
$$x = 17\sqrt{3} \approx 29.44$$

b.
$$x = 4\sqrt{2} \approx 5.66$$

5-79. Since $A = \pi r^2$, $f(r) = \pi r^2$. See graph below. domain: $x \ge 0$, range: $y \ge 0$, x- and y-intercept: (0, 0), no asymptotes, half of parabola: $y = \pi x^2$

5-80. See below:

- a. A good sketch would be a parabola opening upwards with a locator point at (-6, -7).
- b. Shift the graph up 9 units.
- c. The graph is the same except the region below the x-axis is reflected across the axis so that the graph is entirely above the x-axis.
- d. See graph below.

e.
$$y = \sqrt{x+7} - 6$$