Lesson 5.2.4

5-93. Data and justifications vary.

5-94. See below:

a. Some values in the table below are approximate.

x	0.000001	0.00001	0.0001	0.001	0.01	0.1	1	1	2	3	4	5	6
y	-6	-5	-4	-3	-2	-1	0	0	0.30	0.48	0.60	0.70	0.78

b. See graph below.

c. Teams should find a general equation of the form $f(x)=a \log (x-h)+k$.

5-95. See below:

a. The calculator is in base 10 , and $\log _{10}(6) \approx 0.778$
b. $\log _{10}(6) \approx 0.778$ can be re-written as $10^{0.778} \approx 6$. The exponent 0.778 must be between 0 and 1 because 1 $<6<10, \log 1=10$ and $\log 10=1$ and generally as a number increases the exponent will increase.

5-96. See below:
a. 12 because $12 \cdot 926628408=10$
b. Answers vary, but 12 fingers make sense for base 12 .

5-97. See below:

a. $x=25$
b. $x=2$
c. $x=343$
d. $x=\sqrt{3}$
e. $x=3$
f. $x=4$

5-98. Less than one; Possible justifications: $0.1<0.3<1, \log (0.1)=-1$ and $\log 1$ is 0 or because you would need to raise 10 to a fractional power to get a number less than 10 .

5-99. $x \approx 17.673$; Students are likely to use the guess and check method or graphing.
5-100. See below:
a. $(2 x+1)(2 x-1)$
b. $(2 x+1)^{2}$
c. $(2 y+1)(y+2)$
d. $(3 m+1)(m-2)$

5-101. See below:

a. $-1<x<3$
b. $x \leq 1$ or $x \geq 2$

5-102. No; $\log _{3} 2<1$ and $\log _{2} 3>1$

5-103. See below:

a. $\quad a=\frac{y}{b^{x}}$
b. b is the $x^{\text {th }}$ root of $\frac{y}{a}$ or $b=\sqrt[x]{\frac{y}{a}}$

5-104. See graphs below.

