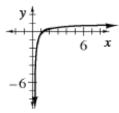
Lesson 5.2.4


5-93. Data and justifications vary.

5-94. See below:

a. Some values in the table below are approximate.

	0.000001												
у	-6	-5	-4	-3	-2	-1	0	0	0.30	0.48	0.60	0.70	0.78

b. See graph below.

c. Teams should find a general equation of the form $f(x) = a\log(x - h) + k$.

5-95. See below:

- a. The calculator is in base 10, and $\log_{10}(6) \approx 0.778$
- b. $\log_{10}(6) \approx 0.778$ can be re-written as $10^{0.778} \approx 6$. The exponent 0.778 must be between 0 and 1 because 1 < 6 < 10, $\log_{10} = 10$ and $\log_{10} = 1$ and generally as a number increases the exponent will increase.

5-96. See below:

- a. 12 because $12^{.926628408} = 10$
- b. Answers vary, but 12 fingers make sense for base 12.

5-97. See below:

a. x = 25

b. x = 2c. x = 343d. $x = \sqrt{3}$ e. x = 3f. x = 4

5-98. Less than one; Possible justifications: 0.1 < 0.3 < 1, $\log(0.1) = -1$ and $\log 1$ is 0 or because you would need to raise 10 to a fractional power to get a number less than 10.

5-99. $x \approx 17.673$; Students are likely to use the guess and check method or graphing.

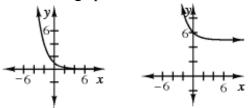
5-100. See below:

- a. (2x + 1)(2x 1)
- b. $(2x+1)^2$
- c. (2y+1)(y+2)
- d. (3m+1)(m-2)

5-101. See below:

a. -1 < x < 3

b. $x \le 1$ or $x \ge 2$


5-102. No; $\log_3 2 < 1$ and $\log_2 3 > 1$

5-103. See below:

a.
$$a = \frac{y}{b^x}$$

b. *b* is the *x*th root of $\frac{y}{a}$ or $b = \sqrt[x]{\frac{y}{a}}$

5-104. See graphs below.

