5.2.4 How do I differentiate a quotient?

Quotient Rule: Two Proofs

5-87. Now you can differentiate *powers* and *products*. In this problem, you will discover how to use these techniques on *quotients*.

- a. Explain why $\frac{1}{2x+1} = (2x+1)^{-1}$. Then use this fact to find $\frac{d}{dx} \left[\frac{1}{2x+1} \right]$.
- b. Now find $\frac{d}{dx} \left[\frac{x}{2x+1} \right]$ by first rewriting $\frac{x}{2x+1}$ as a product. Simplify your result.

5-88. Rewrite each of these as a product and then find the derivative. Use the Product Rule only if you need to.

a.
$$y = \frac{\sqrt{16 - x^2}}{3}$$

b.
$$f(x) = \frac{5x}{(2x+1)^3}$$

5-89. Since many functions are written in the form $j(x) = \frac{f(x)}{g(x)}$, it would be convenient to derive a general formula for the derivative of quotients. Below are two demonstrations of how the **Quotient Rule** can be derived. Work through each demonstration and then compare the results. Are they the same?

					_
T	es]	احنا	σD	ra	Λf
	$\langle C \rangle$	115	`	1 ()(,,,

- 1. Rewrite $\frac{f(x)}{g(x)}$ as a product.
- 2. Use the Product Rule and the Chain Rule to find $\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right)$.
- 3. Simplify as much as possible.

Tom's Proof

- 1. Let $j(x) = \frac{f(x)}{g(x)}$ and solve for f(x).
- 2. Use the Product Rule to find f'(x).
- 3. Solve for j'(x).
- 4. Simplify as much as possible.

5-90. Use your Quotient Rule to find y' if:

a.
$$y = \frac{\sin(x)}{\sqrt{x}}$$

b.
$$y = \frac{3x^2 - 2x + 1}{5x - 1}$$

c.
$$y = \frac{5 - 6x^2 + 2x^3}{x - x^2}$$

d.
$$y = \frac{1}{x^3} + \frac{1}{x^4}$$

5-91. Sometimes the Quotient Rule is not your only choice of differentiation techniques. Find $\frac{d}{dx} \left(\frac{3}{x-2} \right)$ in two ways: using the Quotient Rule and using the technique from problem 5-87. Which method is easier?

MATH NOTES

The Quotient Rule

The Quotient Rule states that if $h(x) = \frac{f(x)}{g(x)}$, then $h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$.

Refer to problem 5-89 for two proofs of this result using the Product Rule and the Chain Rule.

5-92. THE CONTRIVED FUNCTION COMPANY

The contrived function company has just opened and wants to keep track of their resource-cost ratio. The resources are determined by the amount of money available. According to company projections, the anticipated resources function is $r(x) = (x - 3)^2 + 8$, where x is in months and r(x) is in thousands of dollars. The cost function is c(x) = 2x + 1.

Calculate when the company will have its lowest resource-cost ratio, $\frac{r(x)}{c(x)}$.

- **5-93.** Suppose you are given a function $f(x) = x^3 + x^{2/3}$. Determine all critical points. Which points are minimums, maximums, and points of inflection? Homework Help •
- **5-94.** Use your derivative tools to differentiate each function. Homework Help **\(\)**

a.
$$\frac{d}{dx} \left(\sin \sqrt[3]{x+3} \right)$$

b.
$$\frac{d}{dx} \left(\frac{4-x^2}{x^3-2} \right)$$

c.
$$\frac{d}{dx} \left(\frac{1}{\cos x} \right)$$

d.
$$\frac{d}{dx} ((6x-1)\sin(2x))$$

e.
$$\frac{d}{dx} \left(\frac{\sin(3x)}{2x^3} \right)$$

f.
$$\frac{d}{dx} \left(\sqrt{\sin^2 x + \cos^2 x} \right)$$

- **5-95.** When Regit hit his golf ball at the 18th hole, it went straight up in the air! Homework Help .
 - a. If he hit it with an initial velocity of 144 feet per second, write an equation for the ball's velocity, v(t), at time t. Assume the gravitational constant a(t) = -32 ft/sec² and that Regit hit the ball while it was on the ground.

- b. When was the ball at rest? What is happening at that point in time?
- c. What was the maximum height of the ball?
- **5-96.** Simplify the following *without a calculator*. Homework Help **\(\)**

a.
$$\int_{1}^{8} \left(\sqrt[3]{27u}\right) du$$

b.
$$\frac{d}{dx} \left(\int_4^{18} (6x - 3) dx \right)$$

c.
$$\int f''(x)dx$$

5-97. Sketch each of the following piecewise functions. Then, determine if the functions are continuous and differentiable over all reals. Homework Help

a.
$$f(x) = \begin{cases} 2x^3 & \text{for } x < 0 \\ 3x^2 & \text{for } x \ge 0 \end{cases}$$

b.
$$f(x) = \begin{cases} (x+1)^2 + 1 & \text{for } x < -2 \\ |x| & \text{for } -2 \le x < 2 \\ \sin(x-2) + 2 & \text{for } x \ge 2 \end{cases}$$

5-98. Using the graph of f'(x), determine the values of x where f(x) has a local minimum, local maximum or point of inflection. Justify your answer for each point. Homework Help

5-99. For the following functions, find f(x), c, f'(x), and f'(c). Homework Help $\stackrel{\bullet}{\searrow}$

a.
$$f'(c) = \lim_{\Delta x \to 0} \frac{(5-3(1+\Delta x))-2}{\Delta x}$$

b.
$$f'(c) = \lim_{\Delta x \to 0} \frac{(-2 + \Delta x)^3 + 8}{\Delta x}$$

c.
$$f'(c) = \lim_{x \to 9} \frac{2x^{1/2} - 6}{x - 9}$$