5.4.1 How is the Chain Rule applied to the FTC?

Chain Rule Extension of the Fundamental Theorem of Calculus

In Chapter 4 you learned the Fundamental Theorem of Calculus, which related derivatives to integrals. You now have the skills to apply your derivative rules to the Fundamental Theorem.

5-138. Complete the following.

a. Explain why the following equation is true.

$$\frac{d}{dx} \int_{a}^{x} f(x) dx = f(x)$$

- b. Note that x, the upper bound is a function. Let's investigate a more complicated case $\frac{d}{dx} \int_{a}^{g(x)} f(t) dt$, by justifying the following steps.
 - i. $\frac{d}{dx} \int_{a}^{g(x)} f(t) dt$ How is this integral different than the one in part (a)?
 - ii. $\frac{d}{dx}(F(g(x)) F(a))$ What was done to get this?
 - iii. $f(g(x)) \cdot g'(x) = 0$ What derivative rule was used? Why did the second part become 0?
- c. In general, $\frac{d}{dx} \int_{a}^{g(x)} f(t) dt = \underline{\hspace{1cm}}$
- **5-139.** Using what you did in the previous problem, determine $\frac{d}{dx} \int_{h(x)}^{g(x)} f(t) dt = ?$
- **5-140.** Use your new shortcuts to quickly evaluate each of the following expressions.
 - a. $\frac{d}{dx} \int_2^{x^2} \sin(t^5) dt$
 - b. $\frac{d}{dx} \int_3^{x^2} \sin(\csc(t)) dt$
 - c. $\frac{d}{dx} \int_{\tan x}^{4} \cot(t^2) dt$

d.
$$\frac{d}{dx} \int_{\sin x}^{\cot x} \sqrt{1+t^3} dt$$

$$e. \frac{d}{dx} \int_{x^3}^{3\sin x} \sqrt{t^2 - 1} \, dt$$

f.
$$\frac{d}{dx} \int_{\csc x}^{x^3} \frac{t-3}{t+1} dt$$

5-141. Given the graph of f'(x) below, determine the values of x for which f(x) has local minima, maxima, and points of inflection on the interval [-3, 3]. Homework Help

5-142. Using the graph of f'(x) in problem 5-141, and given that f(0) = 2, determine the following values. Homework Help \bullet

- a. *f*(1)
- b. f'(1)
- c. f(-3)
- d. f'(-2)
- e. f''(2)

5-143. Easy Limits

Evaluate each of the following limits. Homework Help \(\)

a.
$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$$

b.
$$\lim_{h\to 0} \frac{\sec(3(x+h))-\sec(3(x-h))}{2h}$$

c.
$$\lim_{h \to 0} \frac{\cot\left(\frac{\pi}{4} + h\right) - 1}{h}$$

d.
$$\lim_{x \to \pi} \frac{\tan 5x}{x-\pi}$$

- e. What do all of the limits above have in common?
- **5-144.** Find the coordinates for all of the relative minima, relative maxima and points of inflection for the function $f(x) = (x^2 1)(x + 1)^2$. Homework Help
- **5-145.** Find the equation of the line tangent to $y = \cot(2x)$ at $x = \frac{\pi}{3}$. Homework Help
- **5-146.** Multiple Choice: Let f be the function given by f(x) = |x|. Which of the following statements about f are true? Homework Help \bullet .
 - I. f is continuous at x = 0.
 - II. f is differentiable at x = 0.
 - III. f has an absolute minimum at x = 0.

a. I only

b. II only

c. III only

d. I and III

e. II and III

5-147. The function f is continuous on the closed interval [2, 8] and has values that are in the table to the right. Homework Help \bullet

<u>=====================================</u>	5	30
a. Using the sub-intervals [2, 5], [5, 7] and [7, 8], what is the trapezoidal	7	40
	8	20
approximation of $\int_{2}^{8} f(x)dx$?		

b. On what sub-interval is the average slope a minimum?

I) [2, 5]

II) [5, 7]

III) [7, 8]