Lesson 6.1.2

6-16. See below:

a. A plane.
b. Yes, because $5(4)+8(5)+10(-2)=40$
c. Teams plot points on their graphs.
d. - Yes (the solutions are infinite).

- Infinite solutions.
- All points within the plane are solutions.
- A plane

6-17. See below:

a. It is a line, because the equation is a first-degree polynomial.
b. Answers vary.

6-18. See below:

a. A plane
b. Possible strategies: finding the $x-, y^{-}$, and z-intercepts; graphing the three two-variable equations that result from letting $x=0, y=0$, or $z=0$; etc.

6-19. See below:
a. a plane with intercepts $(20,0,0),(0,65,0),(0,0,52)$
b. A plane with intercepts $(-9,0,0),(0,12,0)$ and parallel to the z-axis.

6-20. See below:

a. Solution shown below.

b. Solution shown below.

c. A plane with intercept $(4,0,0)$ and parallel to the $y z$-plane, shown below.

6-21. See below:

a. $(0,10,0),(0,0,4)$
b. $(8,0,0),(0,6,0),(0,0,12)$
c. $(0,0,4),(0,0,-4),(2,0,0),(-8,0,0)$
d. $(0,0,6)$

6-22. Sketches shown below:

a. A line.

b. They do not intersect.

c. They do not intersect.

6-23. See below:

a. $y=-2(x+4)^{2}+2$
b. $y=\frac{1}{x-2}$
c. $y=-x^{3}+3$

6-24. It is not the parent. The second equation does not have a vertical asymptote, and it has a maximum value, while $y=\frac{1}{x}$ does not (or there is no way to get the graph of $y=-\frac{1}{x^{2}+7}$ by shifting or stretching the graph of $y=\frac{1}{x}$).

6-25. See below:

a. $x=\frac{b}{3}$
b. $x=\frac{b}{5 a}$
c. $x=\frac{b}{1+a}$

6-26. See below:

a. No, input equals output only if $x \geq 0$.
b. The output is the absolute value of the input value.
c. $n+2, n^{2}-4,|n|$
d. Because $\sqrt{x^{2}}=|x|$.

6-27. It is the $\log _{5}(x)$ graph shifted 2 units to the right. See graph below.

6-28. See below:

a. 254,000 people/year
b. 1,574,000 people/year
c. 1960 to 2010

6-29. See below:

a. -7
b. -102
c. -102
d. -132
[Hide Toolbars]

