6.1.2 What is the difference between

 x^2 , 2^x , and 3^x ?

Derivatives of Exponential Functions

6-17. So far you have learned many derivative rules. However, there are still parent graphs you cannot yet differentiate.

- a. Which parent equations can you not yet differentiate?
- b. With your team, make a list of all the techniques we have used so far to find slope functions.

6-18. DERIVATIVES OF EXPONENTIAL FUNCTIONS, Part One

Find an untranslated, unstretched exponential function that is its own derivative. That is, given $y = a^x$, find a such that $\frac{d}{dx}(a^x) = a^x$.

6-19. NATURAL LOGARITHMS

Radians, which seem very unnatural at first, turn out to be the "natural" mathematical unit for measuring angles because $\frac{d}{dx}(\sin x) = \cos x$ only if x is measured in radians.

Similarly, $y = e^x$ turns out to be the "natural" exponential function because $\frac{d}{dx}(\sin x) = \cos x$ only if a = e. Therefore, it makes sense to call the *inverse* of $y = e^x$ the "natural" logarithmic function. This inverse function, $y = \log_e x$, has shorthand: $y = \ln x$ (pronounced "el en of x") for "logarithmnatural" of x.

- a. Use the natural logarithm function $y = \ln(x)$ to find an exact solution for $e^{2x-1} = 5$. Check your solution with your calculator.
- b. Explain why $\ln e = 1$.

6-20. DERIVATIVES OF EXPONENTIAL FUNCTIONS, Part Two

Recall your approximation of $\frac{d}{dx}(2^x)$ from Lesson 6.1,1. Find an exact equation for $\frac{d}{dx}(2^x)$ using the fact that $\frac{d}{dx}(e^x) = e^x$.

If the exponential function can be expressed in terms of e, we can use our derivative rules to find the derivative of the function. We will start with $y = 2^x$:

- a. Rewrite $y = 2^x$ in terms of e.
- b. Use the Chain Rule to find the derivative of the expression found in part (a).

- c. Combine your results form parts (a) and (b) to find $\frac{dy}{dx}$ using the original base.
- d. Find a general expression for $\frac{d}{dx}(a^x)$.
- **6-21.** Find the derivative of each function below.

a.
$$y = 5^{x}$$

b.
$$y = 3 \cdot 7^x$$

c.
$$y = \frac{1}{\ln 5} 5^x$$

6-22. Find the derivative of each function below.

a.
$$3^{2x} + 3^{x-1} = f(x)$$

b.
$$2^{x^3} \tan x = y$$

c.
$$e^{\csc x} + 5^{2x} = g(x)$$

6-23. An electronics store purchases stereos from a supply company at a cost of \$63 each. They currently sell the stereos for \$99. At this price, the store is averaging 23 sales per week. Marketing studies show that for every \$2 decrease in price, the store will sell an additional 5 stereos. What price should the store use to maximize their profits? Homework Help .

6-24. First, decide if differentiating the following expressions requires the Product Rule, the Quotient Rule, the Chain Rule, or a combination of these rules. Then, find the following derivatives. Homework Help

a.
$$\frac{d}{dt} \left[f(t^2) \right]$$

b.
$$\frac{d}{dx} [x \cdot h(x)]$$

c.
$$\frac{d}{dt} \left[t \cdot h(t^2) \right]$$

- **6-25.** Wei Kit is still looking for exponent shortcuts! Homework Help **\(\)**
 - a. Since $2^{5+3} = 2^5 \cdot 2^3$, he thinks there is a way to simplify 2^{x+3} but needs your help. How can he rewrite 2^{x+3} ?

- b. Is 2^{x+3} proportional to 2^x ? Explain why or why not.
- c. Use Wei Kit's method to rewrite 3^{x-2} and 5^{x+4} .
- d. Does Wei Kit's method work on 3^{2x} ? Why or why not?
- **6-26.** Examine the following derivatives. Consider the multiple tools available for finding derivatives and use the best strategy. After finding each derivative, write a short description of your method. Help .

a.
$$\frac{d}{dx} \left[\sin x \cdot e^x \right]$$

b.
$$\frac{d}{dz} \left[\frac{6z+1}{3z-2} \right]$$

c.
$$\frac{d}{dt} \left[\tan t \cdot \cos t \right]$$

- **6-27.** Earlier, Jamal found the Riemann Sum $\sum_{i=0}^{9} \frac{1}{2} f\left(-3 + \frac{1}{2}i\right)$, to estimate the area under $f(x) = 3x^2 2$ in the interval [-3, 2] using 10 rectangles. Homework Help
 - a. Use the summation feature of your calculator to find the approximate area using Jamal's Riemann sum.
 - b. Find the exact area using an integral expression.
- **6-28.** Since $y = e^x$ and $y = \ln x$ are inverse functions, $e^{\ln x} = x$ and $\ln e^x = x$. Use these facts along with exponent and log laws to rewrite each expression. Homework Help

a.
$$e^{2 \ln x}$$

b.
$$e^{\ln \sqrt{x}}$$

c.
$$\ln \sqrt{e^{5x}}$$

d.
$$ln(5e^x)$$

- **6-29.** Given: $f(x) = \begin{cases} 3x^{2/3} & \text{for } x \le 1 \\ a + bx^2 & \text{for } x > 1 \end{cases}$ where a and b are constants. Homework Help
 - a. For what value(s) of x is the graph non-differentiable, regardless of the values of a and b? Explain what happens to f(x) at these points.
 - b. Find values of a and b so the graph is both continuous and differentiable at x = 1.