Lesson 6.1.3

6-31. See below:

a. Two parallel planes: first plane's intercepts are $(3,0,0),(0,5,0)(0,0,4)$ and second plane's intercepts are $(6,0,0),(0,10,0),(0,0,8)$.
b. There is no solution because the planes are parallel.

6-32. See below:

a. Intersecting planes: first plane's intercepts are $(3,0,0),(0,4,0),(0,0,5)$ and second plane's intercepts are $(6,0,0),(0,2,0),(0,0,5)$.
b. The solution is the line of intersection $10 x-15 y=0$.

6-33. Both systems contain two planes: one system's planes are parallel, and the other system's planes intersect.

6-34. See below:

a. It is a line.
b. Possible answers: $(6,4,-10),(12,8,-25)$
c. Any plane $A x+B y+12 z=60$, where $3 A+2 B=90$. Examples: $18 x+18 y+12 z=60,2 x+42 y+$ $12 z=60$

6-35. See graph below.

6-36. Yes.

6-37. Sample answer: Yes, because if the numbers are the same, the exponent you would use to get them should be the same, given the same base.

6-38. $y \leq-x+4, y \geq \frac{1}{3} x$

6-39. See below:

a. $\frac{x+3}{2 x-1}$
b. $\frac{1}{(x-3)}$

6-40. See below:

a. Most solving strategies will yield $x=8$ or $x=1$.
b. $x=1$ does not check, so it is extraneous.

6-41. See below:

a. $x=-4$ or $x=\frac{5}{2}$
b. $x=-4,2$, or 3
c. $x=0,-1, \frac{7}{2},-\frac{4}{3}, 13$ or -7
d. Set each of the factors equal to zero and solve the corresponding equations.

6-42. See below:

a. Neither
b. Even

6-43. $x=3, y=1, z=3$
[Hide Toolbars]

