Lesson 6.1.3

6-30. See below:

- a. e^x
- b. $(\ln 7)(7^x)$
- c. 3*e*
- d. 21 ln 7

6-31. $\cos(x)$ is inside of 3^x

6-32. See below:

- a. $3\cos(3x)$
- b. $(\ln 5)(5^x)$
- c. $e^{3x}(1+3x)$
- d. $-(\ln 5)(\sin x)(5^{\cos x})$
- e. $(\ln 3)(3^x)\cos(3^x)$
- f. $(ex^{2-5})(3x^2+2x^4)$
- g. $-(\ln 2)(\csc^2 x)(2^{\cot x})$
- h. $e^{\tan x} \sec^2 x$
- i. $-6(\ln 2)(\csc^2 x)(2^{\cot x})$
- j. $(\ln 10)(\sec x \tan x \csc x \cot x) \cdot (10^{\sec x + \csc x})$

6-33. $V = 1.10^t$, $V' = \ln(1.10)1.10^t$, $V'(10) \approx 25$ ¢ per year

- a. 1.647% and 1.691%; Nearly the same, so yes.
- b. Answers will vary, depending on assumed growth rate and starting year. One model is $33.765(1.01669)^t$ where t is years since 2000.
- c. About 47.015 million
- $d. \approx 573,000 \text{ people}$
- e. The approximate population growth during a year is the starting population multiplied by a constant growth factor or "multiplier." In this situation, the multiplier is ≈ 0.0167 .

6-35. See below:

a.
$$\frac{6^x}{\ln 6} - 3 \sec x + C$$

- b. $\frac{64}{15}\pi$
- c. 16.5

d.
$$-\frac{18}{\sqrt[3]{m}} + C$$

6-36. At x = 0 because the slopes on both sides do not agree.

6-37. See below:

- a. Two hemispheres connected by a smaller cylinder.
- b. $315\pi \text{ un}^3$

6-38. See below:

- a. 1
- b. $(\ln 10)10^x \sec^2 10^x$
- c. cos t
- d. $(\sec^2 e^x)e^x$
- e. $-(3 \ln 2)w^2 \sin(w^3) 2^{\cos(w^3)}$

6-39. See below:

a. Velocity is the antiderivative of acceleration.

b.
$$v(t) = -32t + 120$$

c.
$$s(t) = -16t^2 + 120t + 100$$

d. -144 ft/sec

e. 325 ft

f. $t \approx 8.258 \text{ ft}$

6-40. No; graph can have a cusp.