Lesson 6.1.4

6-44. $(2,4)$
6-45. While the planes intersect at $\left(\frac{1}{2},-\frac{1}{3}, 2\right)$, students will not be able to find the point by graphing. This problem motivates students to find a new strategy for solving a system of three equations with three variables.

6-46. See "Suggested Lesson Activity" for possible responses.

6-47. See below:

a. She added the two equations.
b. One way is to add the first and third equations to get $4 x+5 z=12, x=\frac{1}{2}$ and $z=2$.
c. $y=-\frac{1}{3},\left(\frac{1}{2},-\frac{1}{3}, 2\right)$
d. Answers vary.

6-48. See below:

a. $\left(-2,4, \frac{1}{3}\right)$
b. There is no solution because two of the planes are parallel
c. $\left(-1, \frac{1}{2}, 2\right)$
d. The intersection is the line $6 x+4 y=12$ when z is 0 .

6-49. See below:

a. Two of the planes are parallel, so there cannot be a common solution point.
b. The planes can be parallel, and each pair of planes can intersect in a line such that all three lines are parallel.
c. Because they intersect at a line, there are infinite solutions (but all are collinear).

6-51. (1, -2, 4)
6-52. See below:
a. $\approx \$ 140,809.30$
b. ≈ 24.2 years
c. $\approx \$ 164,706.25$

6-53. $x=7$
6-54. See below:
a. They both equal 16 , but this is a special case (for example, $5^{3} \neq 3^{5}$).
b. Yes, because $\log 16=\log 16$.
c. Yes. (Possible response: They have the same solutions).
d. Yes. (Possible response: They have the same solutions).

6-55. See below:
a. $x=6.5$
b. $x=-3.75$ or $x=5$

6-56. See below:
a. $y=\frac{1}{3} x+5$
b. $y=2 x+5$
c. $y=-\frac{1}{2} x+\frac{15}{2}$
d. $y=2 x$

6-57. See below:

a. $y=-x^{2}+4 x$
b. $y=5 \pm \sqrt{x-3}$

6-58. See below:

a. See graph below.

b. See graph below.

6-59. 384 feet

