Lesson 6.1.5

6-60. See the "Suggested Lesson Activity" for expected responses.

6-61. See graph below. Substitute *x*- and *y*-values into $y = ax^2 + bx + c$, and solve the systems of equations for *a*, *b*, and *c*. Results: a = 1, b = 2, c = -3; $y = x^2 + 2x - 3$.

6-62. It takes 2 points to determine the equation of a linear function and 3 to determine the equation of a quadratic (because they are not collinear).

a. See graph below.

- b. x = 3, y = 12
- c. $0 = a(1)^2 + b(1) + c$, $5 = a(2)^2 + b(2) + c$, $12 = a(3)^2 + b(3) + c$
- d. a = 1, b = 2, c = -3

e. $y = x^2 + 2x - 3$, which can be checked by substituting the points one at a time into the equation.

6-64. See below:

- a. $y = 2x^2 3x + 1$
- b. y = -0.5x + 3

6-65. a = 0, so there is no x^2 -term. The points are collinear.

6-66. See below:

- a. (0, 750), (1, 635), (2, 530)
- b. Graph shown below, a parabola.

- c. $y = (5x^2 120x + 750)(1000)$
- d. At 10 minutes, the shuttle burns.

6-67. See below:

- a. (0, 900), (10, 1600), (15, 1875)
- b. See graph below.

- c. $y = -x^2 + 80x + 900$
- d. After 90 days
- e. 10 days.

6-68. See below:

- a. (10, 40), (30, 60), (40, 50)
- b. $y = -\frac{1}{15}x^2 + \frac{11}{3}x + 10$
- c. She will be 1 minute and 40 seconds late.

6-70. Sample answer: You would have to use four points to write four equations and then solve for a, b, c, and d.

6-71. x = -1, y = 3, z = 5

6-72. $y = 3x^2 - 5x + 7$

6-73. See below:

a.
$$\frac{x+3}{x-4}$$

b. $\frac{1}{x(x+2)}$

6-74. See below:

- a. $y + \frac{x}{2}$ b. $2b + 4a^2$ c. 6x - 1
- d. *xy*

6-75. See below:

- a. $x = 12^{y}$
- b. $y^x = 17$
- c. $2x = \log_{1.75} y$
- d. $7 = \log_x 3y$
- **6-76.** *x* = 14

6-77. See below:

- a. ≈ 0.0488 grams
- b. Roughly between 4600 and 6700 depending on how the base is rounded.
- c. Never.

6-78. See graph below.

a. See graph below.

b.
$$x > 0$$
, $y = x + 2$ and $x \le 0$, $y = (x + 2)^3$

6-79. See below:

- a. 2^4 b. 2^{-3} c. $2^{1/2}$ d. $2^{2/3}$ **6-80.** x = -1, y = 3, z = 6
- **6-81**. $y = 2x^2 3x + 5$

6-82. See below:

- a. $24 = b^a$
- b. $7 = (2y)^{3x}$
- c. $5x = \log_2 3y$
- d. $6 = \log_{2q} 4p$

6-83. See below:

- a. $\frac{3}{x+1}$
- b. $\frac{x-4}{x^2-3x+2}$

6-84. Yes, Hannah is correct; $4(x-3)^2 - 29 = 4x^2 - 24x + 7$ and $4(x-3)^2 - 2 = 4x^2 - 24 + 34$.

6-85. See below:

- a. $y = 2(x 2)^2 1$, vertex (2, -1), axis of symmetry x = 2
- b. $y = 5(x 1)^2 12$, vertex (1, -12), axis of symmetry x = 1

6-86. See graph below. $y = \log(x - 6) + 3$

6-87. See below:

- a. $2a^2 4$
- b. $18a^2 4$
- c. $2a^2 + 4ab + 2b^2 4$
- d. $2x^2 + 28x + 94$
- e. $50x^2 + 60x + 14$
- f. $10x^2 17$