## Lesson 6.1.5

6-60. See the "Suggested Lesson Activity" for expected responses.
6-61. See graph below. Substitute $x$ - and $y$-values into $y=a x^{2}+b x+c$, and solve the systems of equations for $a, b$, and $c$. Results: $a=1, b=2, c=-3 ; y=x^{2}+2 x-3$.


6-62. It takes 2 points to determine the equation of a linear function and 3 to determine the equation of a quadratic (because they are not collinear).
a. See graph below.

b. $x=3, y=12$
c. $0=a(1)^{2}+b(1)+c, 5=a(2)^{2}+b(2)+c, 12=a(3)^{2}+b(3)+c$
d. $a=1, b=2, c=-3$
e. $y=x^{2}+2 x-3$, which can be checked by substituting the points one at a time into the equation.

## 6-64. See below:

a. $y=2 x^{2}-3 x+1$
b. $y=-0.5 x+3$

6-65. $a=0$, so there is no $x^{2}$-term. The points are collinear.

## 6-66. See below:

a. $(0,750),(1,635),(2,530)$
b. Graph shown below, a parabola.

c. $y=\left(5 x^{2}-120 x+750\right)(1000)$
d. At 10 minutes, the shuttle burns.

## 6-67. See below:

a. $(0,900),(10,1600),(15,1875)$
b. See graph below.

c. $y=-x^{2}+80 x+900$
d. After 90 days
e. 10 days.

## 6-68. See below:

a. $(10,40),(30,60),(40,50)$
b. $y=-\frac{1}{15} x^{2}+\frac{11}{3} x+10$
c. She will be 1 minute and 40 seconds late.

6-70. Sample answer: You would have to use four points to write four equations and then solve for $a, b, c$, and $d$.


6-71. $x=-1, y=3, z=5$
6-72. $y=3 x^{2}-5 x+7$

## 6-73. See below:

a. $\frac{x+3}{x-4}$
b. $\frac{1}{x(x+2)}$

## 6-74. See below:

a. $y+\frac{x}{2}$
b. $2 b+4 a^{2}$
c. $6 x-1$
d. $x y$

## 6-75. See below:

a. $x=12^{y}$
b. $y^{x}=17$
c. $2 x=\log _{1.75} y$
d. $7=\log _{x} 3 y$

6-76. $x=14$

## 6-77. See below:

a. $\approx 0.0488$ grams
b. Roughly between 4600 and 6700 depending on how the base is rounded.
c. Never.

6-78. See graph below.

a. See graph below.

b. $x>0, \mathrm{y}=\boldsymbol{x}+2$ and $x \leq 0, y=(x+2)^{3}$

## 6-79. See below:

a. $2^{4}$
b. $2^{-3}$
c. $2^{1 / 2}$
d. $2^{2 / 3}$

6-80. $x=-1, y=3, z=6$
6-81. $y=2 x^{2}-3 x+5$

## 6-82. See below:

a. $24=b^{a}$
b. $7=(2 y)^{3 x}$
c. $5 x=\log _{2} 3 y$
d. $6=\log _{2 q} 4 p$

## 6-83. See below:

a. $\frac{3}{x+1}$
b. $\frac{x-4}{x^{2}-3 x+2}$

6-84. Yes, Hannah is correct; $4(x-3)^{2}-29=4 x^{2}-24 x+7$ and $4(x-3)^{2}-2=4 x^{2}-24+34$. 6-85. See below:
a. $y=2(x-2)^{2}-1$, vertex $(2,-1)$, axis of symmetry $x=2$
b. $y=5(x-1)^{2}-12$, vertex $(1,-12)$, axis of symmetry $x=1$

6-86. See graph below. $y=\log (x-6)+3$


## 6-87. See below:

a. $2 a^{2}-4$
b. $18 a^{2}-4$
c. $2 a^{2}+4 a b+2 b^{2}-4$
d. $2 x^{2}+28 x+94$
e. $50 x^{2}+60 x+14$
f. $10 x^{2}-17$

