6.2.2 How do I use the Chain Rule to implicitly differentiate?

Implicit Differentiation Practice

6-67. Implicit differentiation enables us to find $\frac{dy}{dx}$ for any relation involving x and y, even if y cannot be solved explicitly! For example, consider the relation: $y^3 + y - 2x = 5$.

- a. If possible, solve this equation for y in terms of x. If not possible, explain why not.
- b. Use implicit differentiation to find $\frac{dy}{dx}$ in terms of x and y.
- c. If possible, find any values of x for which this relation is non-differentiable.
- d. Does this relation have any horizontal tangents? Use $\frac{dy}{dx}$ to support your claim.
- e. Find the slopes of the tangent at the points (2.5, 2) and (-1.5, 1).
- f. Find $\frac{d^2y}{dx^2}$. Simplify your answer so that only *y* and *x* are present.

6-68. RADICAL RELATIONS, Part One

The equation $x^3 + y^3 = 9xy$ is called a "Folium of Descartes." Its graph is shown below.

- a. Estimate its slope at (4, 2). Then find the exact slope at (4, 2) algebraically.
- b. Is the derivative of this Folium a function? Explain.

6-69. RADICAL RELATIONS, Part Two

A "lemniscate" looks like an infinity symbol. The lemniscate graphed below has the equation:

$$3(x^2 + y^2)^2 = 25(x^2 - y^2)$$

a. Algebraically find the slope(s) of the tangent(s) to the lemniscate at x = 2.

b. Not only is the derivative of this lemniscate *not* a function, it does not exist at two places. Explain.

6-70. THE SECOND DERIVATIVE OF A CIRCLE

Consider the circle $x^2 + y^2 = 16$.

a. Find and simplify $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. Determine the best strategy to do this.

b. Compare the second derivative to the graph of $x^2 + y^2 = 16$. In which quadrants is the graph of the circle concave up? Concave down? Where is the slope changing least rapidly?

6-71. Given the equation $x^2 - 2xy + \tan y = 4$, find an expression for $\frac{dy}{dx}$. Homework Help \(\)

6-72. ASTROID

The graph of $x^{2/3} + y^{2/3} = 4$ is called an "astroid." Homework Help \(\)

- a. Use implicit differentiation to find $\frac{dy}{dx}$.
- b. Where does the astroid have a horizontal tangent? Explain.
- c. Where is the derivative undefined? What happens at those points?
- **6-73.** Below is the number of gold medals the U.S. has received in the last ten Summer Olympic Games. Find the mean number (average) of gold medals the U.S. wins. Write a brief statement describing how you found the mean. Homework Help \(\)

Year	# of Gold Medals	Year	# of Gold Medals
1954	21	1976	31
1960	17	1980	55
1964	35	1984	37
1968	42	1992	41
1972	39	1996	48

6-74. From her second floor window 6 meters above the ground, Xiomara throws a tennis ball at a rate of 11 meters per second up towards her friend Itzagueri who is 12 meters above the ground. Assume a(t) = -9.8 meters per \sec^2 for the acceleration due to gravity. Homework Help

- a. Assuming Itzagueri does not catch the ball, describe the motion of the ball 2 seconds after it was thrown.
- b. When does the ball reach its highest point?
- c. Will the ball reach Itzagueri? Support your answer with calculations.
- d. Determine how high the ball is when it is falling at the rate of 5 meters per second.
- e. Explain what $\int_0^2 a(t)dt$ represents physically.
- **6-75.** While riding his bike to a pond, Steven's distance in miles was modeled by s(t) below. If the lake was 9 miles away and if t is measured in hours: Homework Help

- a. What was Steven's maximum velocity during the trip? When did it occur?
- b. Did Steven ever stop during the trip? Justify your conclusion analytically.
- c. What was Steven's average velocity?
- **6-76.** The good news for the small prairie town of Woisme is that a new fiber optics plant is about to open. The bad news is that the old quarry is about to close, and many residents will lose their jobs as a result. The population is predicted to follow this model over the next few years: Homework Help .

$$p(t) = 100(4 \cdot 2^t - 3^t) = 400 \cdot 2^t - 100 \cdot 3^t$$
.

- a. Using complete sentences, relate the equation for p(t) to the changes of industry.
- b. Algebraically determine when Woisme will have the most people. Use your calculator only for numerical calculations.

6-77. The graph of $y = \frac{1}{x}$ is shown below. The tangent line at (2, 0.5), along with the coordinate axes, form a shaded triangle. Homework Help

- a. Find the equation of the tangent line.
- b. Explain why the tangent line will always give an under approximation of the curve using the second derivative.
- c. Find the area of the shaded triangle.
- d. Find the area of the triangle formed when the tangent is instead placed at (1, 1).
- e. Prove that the area of the shaded triangle formed by a tangent to $y = \frac{1}{x}$ is always the same, regardless of the point of tangency.

6-78. For each of the following functions, find $\frac{dy}{dx}$. Homework Help \(\)

a.
$$y = 3e^{3x}$$

b.
$$x^2 \frac{dy}{dx} - 3y = 2 \frac{dy}{dx}$$

c.
$$y = \int_{2}^{x} (\ln t^2 - 4) dt$$

$$d. y \cos x - 4x = 8$$