Lesson 6.2.3

6-123. See below:

- a. See the "Suggested Lesson Activity" for a description of possible ways to solve this; $y = 0.1707(1.4)^x$ if x represents the date in March.
- b. Solving $5 = 0.1707(1.4)^x$ yields $x \approx 10$, so implantation probably occurred on March 10.
- c. While the due date is November 24, any answer between Nov. 10 and Dec. 10 is reasonable.

6-124. See below:

- a. Answers vary.
- b. i. $200 = ab^{21}$ and $392 = ab^{23}$

ii. While there are multiple possible approaches, most students will probably solve the equations for a and then set the two expressions for a equal to each other to solve for b.

6-125. See below:

- a. Decreasing, because as x increases, y decreases.
- b. Sample graph shown below.

- c. 10, a shift up from the general case, $y = 20(0.5)^{x} + 10$
- d. 30, the asymptote plus the *a* value, or a + c

6-126. See below:

- a. Since investments involving compound interest grow by multiplying, this situation would best be modeled with an equation of the form $y = ab^x$.
- b. Since (0, 1000) is the *y*-intercept, then a = 1000 and $y = 1000b^x$; using (8, 40000), 40000 = $1000b^8$ and $b \approx 1.586$, so the interest rate $\approx 58.6\%$.

- c. 4.4%
- d. Since realistic interest rates are usually less than 10%, Sarah's goal in part (c) is more realistic.

6-127. See below:

- a. $y = 40(1.5)^x$
- b. When x = -9, or 9 days before the last day of October (October 22).
- **6-128.** Possible answer: $4^{(x+1)} = 6$

6-129. Sample solutions below:

- a. $\frac{2}{3}\log(8), \frac{1}{3}\log(8^2), 2\log(\sqrt[3]{8})$
- b. $\log 5^{-2}$, $-\log 25$, $2\log \frac{1}{5}$
- c. $o\log n^b a^b$, $b\log(na)^o$, $bo\log na$

6-130. The graph should show a decreasing exponential function which will have an asymptote at room temperature. Students should realize that the temperature of the drink would not drop below the ambient temperature of the room.

6-131. $y = x^2 - 6x + 8$

6-132. See below:

a. $x \ge \frac{1}{2}$ and $y \ge 3$ b. $g(x) = \frac{(x-3)^2 + 1}{2}$ c. $x \ge 3$ and $y \ge \frac{1}{2}$ d. x

e. x (They are the same, because f and g are inverses.)

6-133. See below:

- a. $x \approx 6.24$
- b. x = 5

6-134. See below:

a. $(x-1)^2 + y^2 = 9$ b. $(x+3)^2 + (y-4)^2 = 4$

6-135. See below:

a. x + 5b. a + 5c. x - yd. $\frac{x^2 + 1}{x^2 - 1}$

6-136. See below:

a. $p^{-1}(x) = \sqrt[3]{(\frac{x}{3} - 6)}$ b. $k^{-1}(x) = \sqrt[3]{(\frac{x-6}{3})}$ c. $h^{-1}(x) = \frac{x+1}{x-1}$ d. $j^{-1}(x) = \frac{3x-2}{x} = -\frac{2}{x} + 3$