Lesson 6.2.3

6-123. See below:

a. See the "Suggested Lesson Activity" for a description of possible ways to solve this; $y=$ $0.1707(1.4)^{x}$ if x represents the date in March.
b. Solving $5=0.1707(1.4)^{x}$ yields $x \approx 10$, so implantation probably occurred on March 10 .
c. While the due date is November 24, any answer between Nov. 10 and Dec. 10 is reasonable.

6-124. See below:

a. Answers vary.
b. i. $200=a b^{21}$ and $392=a b^{23}$
ii. While there are multiple possible approaches, most students will probably solve the equations for a and then set the two expressions for a equal to each other to solve for b.

6-125. See below:

a. Decreasing, because as x increases, y decreases.
b. Sample graph shown below.

c. 10 , a shift up from the general case, $y=20(0.5)^{x}+10$
d. 30, the asymptote plus the a value, or $a+c$

6-126. See below:

a. Since investments involving compound interest grow by multiplying, this situation would best be modeled with an equation of the form $y=a b^{x}$.
b. Since $(0,1000)$ is the y-intercept, then $a=1000$ and $y=1000 b^{x}$; using $(8,40000), 40000=$ $1000 b^{8}$ and $b \approx 1.586$, so the interest rate $\approx 58.6 \%$.
c. 4.4%
d. Since realistic interest rates are usually less than 10%, Sarah's goal in part (c) is more realistic.

6-127. See below:

a. $y=40(1.5)^{x}$
b. When $x=-9$, or 9 days before the last day of October (October 22).

6-128. Possible answer: $4^{(x+1)}=6$
6-129. Sample solutions below:
a. $\frac{2}{3} \log (8), \frac{1}{3} \log \left(8^{2}\right), 2 \log (\sqrt[3]{8})$
b. $\log 5^{-2},-\log 25,2 \log \frac{1}{5}$
c. $o \log n^{b} a^{b}, b \log (n a)^{o}, b o \log n a$

6-130. The graph should show a decreasing exponential function which will have an asymptote at room temperature. Students should realize that the temperature of the drink would not drop below the ambient temperature of the room.

6-131. $y=x^{2}-6 x+8$

6-132. See below:

a. $x \geq \frac{1}{2}$ and $y \geq 3$
b. $g(x)=\frac{(x-3)^{2}+1}{2}$
c. $x \geq 3$ and $y \geq \frac{1}{2}$
d. x
e. x (They are the same, because f and g are inverses.)

6-133. See below:

a. $x \approx 6.24$
b. $x=5$

6-134. See below:

a. $(x-1)^{2}+y^{2}=9$
b. $(x+3)^{2}+(y-4)^{2}=4$

6-135. See below:

a. $x+5$
b. $a+5$
c. $x-y$
d. $\frac{x^{2}+1}{x^{2}-1}$

6-136. See below:
a. $\quad p^{-1}(x)=\sqrt[3]{\left(\frac{x}{3}-6\right)}$
b. $k^{-1}(x)=\sqrt[3]{\left(\frac{x-6}{3}\right)}$
c. $h^{-1}(x)=\frac{x+1}{x-1}$
d. $j^{-1}(x)=\frac{3 x-2}{x}=-\frac{2}{x}+3$

