Lesson 6.4.3

6-150. See below:

a. t = 6 hours, at the end of the trip.

b. 21 mph

c. The areas are the same. Both equal 126.

d.
$$s(t) = -t^3 + 8.5t^2 + 6t$$
; $s(6) = 126$, $(126 - 0 \text{ miles}) \div (6 \text{ hrs}) = 21 \text{ mph}$

e. t = 1.093 and t = 4.573 hours after he starts; Set answer to part (b) equal to v(t).

6-151. See below:

a. 11.182 kilowatts; Find area under curve, then divide by 30 days.

b. During days 15, 17, and 19. Set answer to part (a) equal to k(t).

6-152. The average rate of change of f in [a, b] is zero, so there must be a point c where the instantaneous rate of change is zero.

6-153. a = -1 and b = 1. f'(x) = 0 for $x = -\frac{1}{2}$ and x = 1, but only $x = -\frac{1}{2}$ lies in the open interval (-1, 1). Therefore, $c = -\frac{1}{2}$.

6-154. This function is continuous, therefore the Mean Value Theorem applies.

6-155. See below:

a. Slope of tangents equal the average velocity.

 $b. \approx 3.284$ and 11.949 min

6-156. One possible counterexample: $y = \begin{cases} -1 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$ over [-1, 1]

6-157. 0.464

6-158. See below:

a.
$$-6x \sin(3x^2)$$

$$b. -\cos(3x^2) + C$$

c.
$$\frac{27x^8-5}{2\sqrt{3x^9-5x}}$$

d.
$$2\sqrt{3x^9 - 5x} + C$$

6-159.
$$y = 1.5x^2 + C$$

6-160. See below:

- a. $K(t) = 8t \sin t + \frac{0.01}{3}t^3 + \frac{0.01}{2}t^2$; antiderivative or area function
- b. $K(30) \approx 335.488$
- c. Students sketch graph.
- d. Average = 11.183; yes; slope of the line from (0, 0) to (30, 335.488)

6-161. See below:

a.
$$7\frac{2}{3}$$

6-162.
$$y = -x + 1$$

6-163. Min at
$$x = -3$$
, Max at $x = 3$