Lesson 7.1.2

7-13. See below:

- a. Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are negative. If $\frac{dy}{dt}$ is constant, $\frac{dx}{dt}$ will decrease more and more.
- b. Both $\frac{dr}{dt}$ and $\frac{dh}{dt}$ are positive. If $\frac{dr}{dt}$ is constant, $\frac{dh}{dt}$ is positive but decreases to approach $\frac{dr}{dt}$

7-14. See below:

- a. Answers may vary, but students should see that this situation involves rates both the rate at which the ladder is slipping and the rate at which Mr. Cabana is falling.
- b. Because the ladder is of fixed length, when the ladder moves down the wall, the bottom is forced to move accordingly.

7-15. See below:

- a. The only constants are the 20-ft length of the ladder and $\frac{dx}{dt} = 1.5 \frac{\text{ft}}{\text{sec}}$. Encourage students to label distances and associated rates in their diagrams. In this case, the distance along the ground should be labeled x, and should also show that $\frac{dx}{dt} = 1.5$.
- b. The word "rate" in the question tells us we are looking for a derivative. Since the units for the answer would be $\frac{ft}{sec}$, and the "feet" refers to height, we are looking for $-\frac{dh}{dt}$.
- c. His rate is increasing despite the fact that $\frac{dx}{dt}$ is constant.
- d. $h^2 + x^2 = 20^2$ is the most convenient. Trigonometric equations are also possible, but we are not given the rate of change of the angles.
- e. Differentiating implicitly with respect to t gives $2h \frac{dh}{dt} + 2x \frac{dx}{dt} = 0$, Substitute $\frac{dx}{dt} = 1.5$ $\frac{\text{ft}}{\text{sec}}$, x = 10, $h \approx 17.321$ ft, and $\frac{dh}{dt} \approx -0.866$ $\frac{\text{ft}}{\text{sec}}$.
- f. Because Mr. Cabana is falling!

7-16. See below:

- a. 0
- b. -3 cm/sec

c.
$$A = lw$$
, so $\frac{dA}{dt} = l \frac{dw}{dt} + \frac{dl}{dt} = -30 \frac{\text{cm}^2}{\text{sec}}$

 $d. \approx 1.897$ cm/sec

7-17. See below:

- a. $3 \sin^2 x \cos x$
- b. $\frac{1}{3}(7+4k-2k^2)^{-2/3}(4-4k)$
- c. $(\ln \pi)x^{\pi} \pi^{x} + \pi^{x+1} x^{\pi-1}$
- **7-18.** He ignored the Product Rule.
- **7-19.** Avg. grade \approx 67.011, which was Harry's grade at $t \approx$ 7.63 in the middle of the eighth week.

7-20. See below:

- a. Position on the *x*-axis.
- b. At x = 20.
- c. $-\frac{13}{3}$
- **7-21.** $8\frac{1}{3}$ ft

7-22.
$$y = 4x^{3/4} - \frac{7}{3}x^{3/2} + C$$

7-23. See below:

a.
$$4\pi \sum_{i=0}^{3} (8-2i)^2$$

- b. Yes: $V = 4\pi(8^2 + 6^2 + 4^2 + 2^2) = 1507.964 \text{ in}^3$, leaving $\approx 7.40 \text{ in}^3$ per guest.
- **7-24.** Students should mention that the locations of local max and mins can be determined when f'(x) = 0 or f'(x) is undefined. Students should also discuss strategies to distinguish between a local max and a local min.