Lesson 7.1.3

7-25. See below:

- a. Since the length of his shadow increases as Eric walks away from the lamp, $\frac{dx}{dt}$ and $\frac{ds}{dt}$ will both be positive. If $\frac{dx}{dt}$ is constant, s will increase at a constant rate.
- b. If the height of the lamppost is l and Eric's height is h, then similar triangles shows that $\frac{s}{h} = \frac{x+s}{l}$. Then hx + hs = sl and $h\frac{dx}{dt} + h\frac{ds}{dt} = l\frac{ds}{dt}$. Thus, $\frac{ds}{dt} = \frac{h}{l-h}\frac{dx}{dt}$.
- c. $\frac{ds}{dt} = \frac{20}{11} \approx 1.818 \frac{\text{ft}}{\text{sec}}$

7-26. See below:

- a. 15 feet.
- b. They are equal.
- c. $V = \frac{1}{3}\pi h^3$
- d. 0.168 feet per minute

7-28. See below:

- a. $20 \cdot 6^{20}x^{19}$
- b. $6 \sec^2(6x)$
- c. $\frac{1}{x}$

7-29. See below:

- a. $\frac{6^{19}}{20}x^{20} + C$
- b. $\frac{1}{6} \tan(6x) + C$

$$c. \frac{1}{6} \ln |x| + C$$

7-30. See below:

a.
$$u^2 - 3u = -2$$
, $(u - 2)(u + 1) = 0$, $u = 2, -1$

b.
$$u = \sqrt{5}$$

7-31. See below:

a.
$$\frac{dy}{dx} = \frac{e^5y}{3 - 5xe^5y}$$

b.
$$y = \frac{x}{3}$$

c.
$$y = \frac{1}{30} \approx 0.0333$$

d. underestimate

7-32. It represents the rate at which her hair grows; it is positive. If she gets a haircut, it is undefined at that moment, then positive again.

7-33.
$$A = \frac{1}{2} x \sqrt{13 - x^2}$$
, so $\frac{dA}{dt} = \frac{1}{2} \left(\frac{x - (-2x)}{\sqrt{13 - x^2}} + \sqrt{13 - x^2} \right) \frac{dx}{dt}$. Then $\frac{dA}{dt} \approx 2.479$ units per second.

7-34. See below:

- $a. +\infty$
- b. 1
- c. –∞
- d. $\frac{1}{2}$

7-35. 7.581 billion people

7-36. The triangle will have a maximum area of 42.25 un² when both legs have length ≈ 9.192 units.