Lesson 7.1.4

7-37. Happy substituted too early, at V = 500, $r \approx 4.924$, the radius is increasing at a rate of 0.066 in/sec therefore the diameter is increasing at a rate of 0.131 in/sec.

7-38. See below:

a.
$$\frac{dh}{dt} = \frac{-4s + 6j}{h}$$

b.
$$\frac{dh}{dt} = -4, -0.638, \text{ and } 5.261 \frac{\text{ft}}{\text{sec}}$$

- c. Yes, since the rates show up in the equation for $\frac{dh}{dt}$. For example, if Jonathon ran faster, the distance between them would increase faster.
- **7-39.** Using a right triangle with hypotenuse 5 and height (5-h) creates a radius for the surface of $\sqrt{5^2 (5-h)^2} = \sqrt{10h h^2}$. Since $A = \pi r^2$, $A = 10\pi h \pi h^2$. Then $\frac{dA}{dt} = 10\pi \frac{dh}{dt} 2\pi h \frac{dh}{dt}$.

Substituting h = 2, $\frac{dh}{dt} = 1.5$ gives $\frac{dA}{dt} = 9\pi \frac{\text{cm}^2}{\text{sec}}$.

7-40. Since
$$A = \pi r^2$$
, $\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$.

7-41. Since
$$S = 6x^2$$
, $\frac{dS}{dt} = 12x \frac{dx}{dt}$.

- **7-42.** Min. occurs at (4, 3), where the second derivative is positive.
- **7-43.** 48.788 mph
- **7-44.** The slope of the tangent must equal the derivative at the point of tangency. Therefore at the point $(x_1, x_1^2 + 2x_1 + 4)$, the slope of the line is $(x_1^2 + 2x_1 + 4) / x_1$ which must equal $y' = 2x_1 + 2$. Solving, we find that $x_1 = \pm 2$. The equations of the tangents are y = 6x and y = -2x.

7-45. See below:

- a. Find the area under the velocity curve, then divide by total time. ≈ 16.102 miles per hour.
- b. Find $\frac{s(6)-s(0)}{6-0} \approx 1.9.9$ miles per hour

c. K: 3.34 hr; V: 1.617 and 4.666 hrs.

7-46. See below:

b. The denominator of y' = 0 when x = 0 and $y = \frac{1}{2}x^2$. The curve is undefined at x = 0, but substituting $y = \frac{1}{2}x^2$ into the original equation gives $x = \sqrt[5]{-48}$.