
Lesson 8.1.1

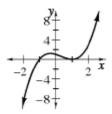
8-1. A reasonable guess would be $y = x(x-2)^2(x-3)$.

8-2. See graphs below.

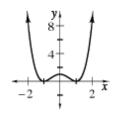
8-3. See below:

- a. Cubics; when the factors are multiplied there is an x^3 .
- b. Example: "The graph goes upwards toward -5, bounces downward at -5 then turns upward again to go through x = 2, then continues upward and is very steep."

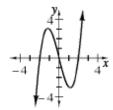
8-4. See below:


a. There are three factors; x-intercepts are (-2, 0), (2, 0), and (3, 0); Example: "The shapes are similar, but this graph has three intercepts and the graph in part (a) crosses once and then bounces off the x-axis."

8-5. It is not factored; (0, 0) because you can factor out an x or you can see that when x = 0, then y = 0; the trace button will give an approximation, choose the closest integer and substitute to check.


- **8-8.** See graphs and tables below.
 - a. Parent function: $y = x^3$

х	у		
-2	_9		
-1	0		
0	1		
1	0		
2	3		


b. Parent function: $y = x^4$

x	У	
-2	9	
-1	0	
0	1	
1	0	
2	9	

c. Parent function: $y = x^3$

x	у		
-2	0		
-1	3		
0	0		
1	-3		
2	0		

8-9. Functions in parts (a), (b), and (e) are polynomial functions; explanations vary.

8-10. Graphs will vary. See below:

a. $0, 1, \text{ or } \infty$

b. 0, 1, or 2

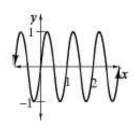
c. 0, 1, 2, 3, or 4

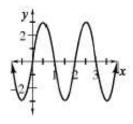
d. 0, 1, 2, 3, or 4 (1 and 3 require the parabola to be tangent to the circle.)

8-11. (-2, -1) and (3, 4)

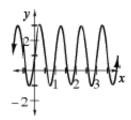
8-12. See below:

a. See answers in bold in the table below.


	1 st	2 nd	3 rd	4 th	
What g does to x:	adds 1	() ²	divides by 3	subtracts 2	
What g^{-1} does to x :	adds 2	multiplies by 3	ultiplies by 3		


b.
$$f^{-1}(x) = (\frac{x-3}{2})^2 + 1$$
, $g^{-1}(x) = \sqrt{3(x+2)} - 1$

8-13. The second graph is shifted up 5 from the first.


8-14. See graphs below:

a.

c.

8-15. See below:

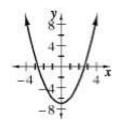
a.
$$4n - 27$$

b. At least 2507 times

8-16. See below:

8-17. The functions in parts (a), (b), (d), (e), (h), (i), and (j) are polynomial functions.

8-18. They are not equivalent. Explanations vary. Students may substitute numbers to check. Also, the second equation can be written y = -x + 12, which is a line, not a circle.

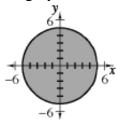

8-19. See below:

a.
$$x = 2$$
 or $x = 4$

b.
$$x = 3$$

c.
$$x = -2$$
, $x = 0$ or $x = 2$

8-20. See graph below.



b.
$$x = \sqrt{7}, -\sqrt{7}$$

8-21.
$$x = -1 \pm \sqrt{6}$$

- a. 2
- b. At $x \approx 1.45$ and $x \approx -3.45$

8-22. See graph below.

8-23.
$$x = -1$$
 or 5

8-24. See below:

a.
$$y = (3^x) - 4$$

b.
$$y = 3^{(x-7)}$$

8-25. See answers in bold in the below:

x (angle)	–90°	-45°	0°	45°	90°	135°	180°	 270°
y (height)	-30'	-21.2'	0'	21.2'	30'	21.2'	0'	-30'

- a. Repeat the pattern for several cycles
- b. 30°

c.
$$y = 30 \sin x$$