Lesson 8.1.3

8-45. See below:

- a. y = x(x + 3)(x 2), may use x = -2 or x = 1 to check
- b. $y = -x^3(x+3)(x-2)$, may use x = -2, x = -1 or x = 1 to check
- c. Students are likely to try $y = (x + 2)^2(x 1)$ or $y = -(x + 2)^2(x 1)$ and find that it does not check. The equation needs a stretch factor.
- **8-46.** The second graph is a vertical stretch of the first.

8-47. See below:

- a. Test a point, $y = 2(x+3)(x+1)(x-2)^2$
- b. You could substitute the coordinates into the equation for x and y and solve for a. a = 2. You could plug in other points to see how well they fit.

8-48. See below:

- a. min: 4th-degree
- b. 0, 2, and 3. 2 is a double root
- c. $y = 0.64x(x-2)^2(x-3)$
- d. ≈ 181 feet

8-49. See below:

a.
$$y = -2(x+2)^2(x-2)$$

b.
$$y = -\frac{3}{4}(x+2)^2(x-1)^2$$

- **8-50.** A likely answer is $y = 3(x+1)^2(x-4)$, but other answers are possible.
- **8-51.** Yes; the bounce is accounted for and substitution verifies that the given points work in the equation. Answers vary.
- **8-52.** No, because the new point only satisfies the equation $y = 3(x+1)^2(x-4)$.
- 8-53. Sample answer: You have to know how many times a factor is used, or you need an additional

point to check.

8-54. Stretch factor is -2; $f(x) = -2(x+2)^2(x-1)$.

8-55. See below:

a. degree 4,
$$a_4 = 6$$
, $a_3 = -3$, $a_2 = 5$, $a_1 = 1$, $a_0 = 8$

b. degree 3,
$$a_3 = -5$$
, $a_2 = 10$, $a_1 = 0$, $a_0 = 8$

c. degree 2,
$$a_2 = -1$$
, $a_1 = 1$, $a_0 = 0$

d. degree 3,
$$a_3 = 1$$
, $a_2 = -8$, $a_1 = 15$, $a_0 = 0$

e. degree 1,
$$a_1 = 1$$

f. degree 0,
$$a_0 = 10$$

8-56. Possible equation: p(x) = 2.5(x+4)(x-1)(x-3)

8-57. See below:

a.
$$v = 4x^2 + 5x - 6$$

b.
$$y = x^2 - 5$$

8-58. There is no real solution, because a radical cannot be equal to a negative value. If students miss this, they are likely to find the incorrect solution x=-2, but should recognize that it is incorrect when they substitute it back in to check.

8-59. See below:

c.
$$C: (-9, 4), r: 5\sqrt{2}$$

8-60. See below:

a.
$$x = \frac{\log 17}{\log 2}$$

b.
$$x = 242$$

c.
$$x = 4$$

d.
$$x = 7$$

8-61. See below:

a.
$$-3 < x < 2$$

b.
$$x \le -1 \text{ or } x \ge \frac{7}{3}$$

8-62.
$$y = 2 + 4 \sin x$$