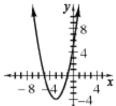
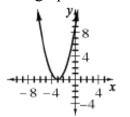

Lesson 8.2.1

8-63. See below:

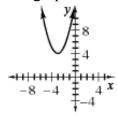
- a. Square root
- b. 2
- c. 2
- d. $\pm \sqrt{2}$, $\approx \pm 1.4142$
- **8-64.** You need to take the square root of a negative number.

8-65. See below:

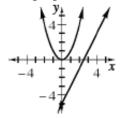

- a. 2*i*
- b. $6i^2 = -6$
- c. $4i^2 = -4, -4(-5i) = 20i$
- d. 5*i*
- **8-66.** See graph below:


- a. No
- b. $x = 2 \pm i$

8-67. See below:


a. See graph below, -1 and -5

b. See graph at below. x = -3


c. See graph below, No, because it does not cross the x-axis. $x = -3 \pm 2i$

d. If the graph crosses the *x*-axis, the equation has real roots. If the graph does not cross the *x*-axis, the equation has complex roots, and if the graph only touches the *x*-axis there is only one real root.

8-68. See below:

a. See graph below, the two graphs do not intersect.

b.
$$(1+2i, -3+4i), (1-2i, -3-4i)$$

c. This is purely speculative at this point. The point of the question is to wonder.

8-69. $\frac{1}{x} = -x + 1$ means $1 = -x^2 + x$, so $x^2 - x + 1 = 0$; this has complex roots, so the graphs do not intersect; $x = \frac{1 \pm i\sqrt{3}}{2}$.

8-70. See below:

a.
$$-18 - 5i$$

b.
$$1 \pm 2i$$

c.
$$5+i\sqrt{6}$$

8-71.
$$i^3 = i^2 i = -1i = -i$$
; 1

8-72. See below:

- a. -21
- b. -10 + 7i
- c. -22 + i
- **8-73.** Yes, substitute it into the equation to check.
- **8-74.** x = -8
- **8-75.** Yes; both are equivalent to $x^2 10x + 25$.

8-76. See below:

- a. 7*i*
- b. $\sqrt{2}i$ or $i\sqrt{2}$
- c. -16
- d. -27i

8-77. See below:

- a. $\frac{x+3}{2}$
- b. $\sqrt{x-2} + 3$

8-78. See below:

- a. $x \approx 2.24$
- b. $x \approx \pm 2.25$