Lesson 8.2.2

8-79. No.

- a. $-5 \pm 3i$
- b. $2 \pm i \sqrt{5}$

8-80. Answers might include: Both equations had two complex roots; the roots were the same except for the middle sign; some students may notice that the real part is the opposite of half the middle term of the equation in standard form.

8-81. See below:

- a. 4, 5
- b. 6, 34
- c. -8, 17
- d. 2, 4
- e. 3 2i
- f. you get another complex number 1 32i
- g. a bi

8-82. See below:

- a. $y = x^2 4x + 5$
- b. $y = x^2 6x + 34$
- c. $v = x^2 + 8x + 17$
- d. $v = x^2 x + 1$

8-83. The solutions are $3 \pm 4i$, the coefficient of x is the opposite of the sum and the constant is their product.

- **8-84.** Students should multiply (x (a + bi))(x (a bi)).
- **8-85.** Yes, $x + 4 = \pm i$; $(x + 4)^2 = -1$; $x^2 + 8x + 17 = 0$.

8-86. Possible equations listed below:

a.
$$4x^2 + 17x - 15 = 0$$

b.
$$x^2 + 9 = 0$$

c.
$$x^2 - 10x + 29 = 0$$

d.
$$x^2 + 6x + 7 = 0$$

8-87. Possible functions listed below.

a.
$$f(x) = x^2 + 6x + 10$$

b.
$$g(x) = x^2 - 10x + 22$$

c.
$$h(x) = x^3 + 2x^2 - 7x - 14$$

d.
$$p(x) = x^3 + 2x^2 - 14x - 40$$

8-88. See below:

a.
$$b^2 - 4ac = -7$$
, complex

b.
$$b^2 - 4ac = 49$$
, real

8-89. See graph below. area = 25 sq. units.

8-90. See below:

a. repeat
$$1, i, -1, -i$$
, etc

d.
$$i, -1, -i$$

- e. 1, i, -1, -i
- 8-91. See below:
 - a. 1
 - b. *i*
 - c. -1
- **8-92.** If n is a multiple of 4, the value is 1; if it is 1 more than a multiple of 4, the value is i; if it is 2 more than a multiple of 4, the value is -1; if it 3 more than a multiple of 4, the value is -i.

8-93. See below:

- a. $x = \frac{\log 17}{\log 3}$
- b. $x = \sqrt[3]{17}$
- 8-94. See below:
 - a. 2
 - b. 4
 - c. 5
 - d. 3
 - e. 1

8-95. See below:

- a. Standard form for y-intercept at (0, 400) and graphing form for vertex at (0.5, 404).
- b. 400 ft; 404 ft

8-96. See below:

- a. $y = \log x$
- b. x = 2
- c. $y = \log_2(x 2)$ is one possibility.