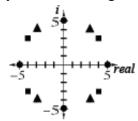
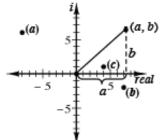

Lesson 8.2.3

8-97. See below:

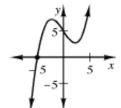

a. See graph below.

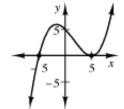

- b. Students discuss strategies.
- c. See graph above.

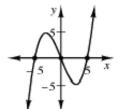
8-98. See below:

a. plotted as triangles in the graph below.

- b. plotted as squares in the graph above
- c. plotted as circular dots in the graph above
- d. the points are all on a circle, 5 units.
- **8-99.** See graph below.

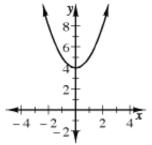

- b. $\sqrt{53}$
- c. √17
- d. $\sqrt{a^2 + b^2}$


8-100. See below:


- a. 2
- b. 3
- c. 0
- d. 1

8-101. See below:

a. See possible sketches below.

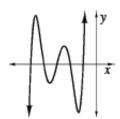


b. It changes direction twice or not at all, so one end goes up and the other goes down, and it must cross the *x*-axis.

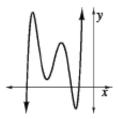
8-102. See below:

- a. 1, 2, or 3
- b. Students check answers
- c. x = 2, $\frac{1 \pm i\sqrt{3}}{2}$
- d. One real, two complex.
- **8-103.** See graph below. roots: $x = \pm 2i$

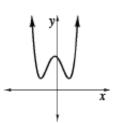
a. vertex: (0, 4), axis of symmetry: x = 0

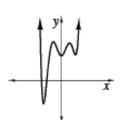


8-104. See below:

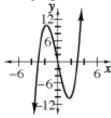

- a. three real linear factors (one repeated), therefore two real (one single, one double) and zero complex (non-real) roots
- b. one linear and one quadratic factor, therefore one real and two complex (non-real) roots
- c. four linear factors, therefore four real and zero complex (non-real) roots
- d. two linear and one quadratic factor, therefore two real and two complex (non-real) roots

8-105. See graphs below:

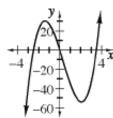

a.


b.

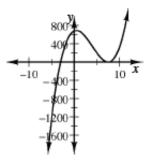
c.


d.

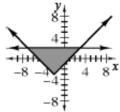
8-106. See below:


a.
$$(3, 0), (0, 0), \text{ and } (-3, 0)$$

b. See graph below.



8-107. See below:


a. x-intercepts: $\left(-\frac{5}{2},0\right)$, $\left(0,0\right)$, and $\left(\frac{7}{2},0\right)$, y-intercept: $\left(0,0\right)$

b. x-intercepts: (-3, 0) and $(\frac{15}{2}, 0)$ (double root), y-intercept: (0, 675)

8-108. See graph below.

8-109. See below:

- a. Platform is 11.27 meters off the ground. $h = -4.9(t-5)^2 + 133.77$; therefore, the maximum height is 133.77 meters. Time when h = 0 is 10.22 seconds.
- b. $h \approx -4.9(t 10.22)(t + 0.22)$. Factored form reveals the intercepts, or how long it took the firework to reach the ground.)

8-110. $b \ge 20$ or $b \le -20$

8-111. See below:

a.
$$(i-3)^2 = i^2 - 6i + 9 = -1 - 6i + 9 = 8 - 6i$$

b.
$$(2i-1)(3i+1) = 6i^2 - 3i + 2i - 1 = -6 - i - 1 = -7 - i$$

c.
$$(3-2i)(2i+3) = 6i-4i^2-6i+9=4+9=13$$

8-112.
$$(\pm 6, \frac{1}{2})$$